TY - CONF A1 - Bonse, Jörn T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - SPIE Photonics West Conference, Symposium "Laser-Based Micro- and Nanoprocessing XI" CY - San Francisco, USA DA - 28.01.2017 KW - Laser-induced periodic surface structures KW - Surface functionalization KW - Femtosecond laser PY - 2017 AN - OPUS4-39216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of Fluorescence Spectroscopy: From Functional Chromophores to Fluorescence Standards T2 - Fluoreszenz-Kolloquium von ISS CY - Regensburg, Germany DA - 2009-12-08 PY - 2009 AN - OPUS4-19422 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirner, Sabrina V. T1 - Applications of femtosecond-laser processed surfaces N2 - Applications of femtosecond laser processed surfaces are reviewed. This includes the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, the reduction of cell adhesion on novel pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - International Workshop "Laser Processing for Bionic Applications" CY - Berlin, Germany DA - 17.11.2017 KW - Biomimetics KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures KW - Surface functionalization PY - 2017 AN - OPUS4-43034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René T1 - Applications of distributed acoustic sensing N2 - Review of early AIP related early developments. Overview of distributed methods at BAM. Examples of applications of distributed acoustic sensing for infrastructure monitoring. T2 - innoFPSEC Photonik Seminar CY - Potsdam, Germany DA - 07.06.2017 KW - Fibre-optic sensing KW - Distributed acoustic sensing KW - Structural health monitoring PY - 2017 AN - OPUS4-40641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of absorption and refraction tomography in Materials Science and Non-destructive Testing T2 - ISTEC Materials Science Seminars, CNR CY - Faenza, Italia DA - 2014-10-31 PY - 2014 AN - OPUS4-32208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of absorption and refraction tomography in Materials Science and Non-destructive Testing T2 - Uni Bremen, Kolloquiuen CY - Bremen, Germany DA - 2014-11-17 PY - 2014 AN - OPUS4-32207 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of absorption and refraction tomography in Materials Science and Non-destructive Testing T2 - Seminars of the FNLP, JINR CY - Dubna, Russia DA - 2014-11-07 PY - 2014 AN - OPUS4-32206 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of absorption and refraction tomography in Materials Science and Non-destructive Testing T2 - FZ Jülich - Kolloquien der Keramischen Werkstoffe CY - Jülich, Germany DA - 2014-09-17 PY - 2014 AN - OPUS4-32210 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Applications of a Multi-Channel Ultrasound System for Assessing Large Concrete Structures N2 - Non-destructive testing (NDT) plays a vital role in the assessment of large concrete structures, where the detection of internal defects is particularly challenging due to size, material heterogeneity and complex geometries. In this study, the use of a multi-channel, large-aperture ultrasound system is demonstrated for improving the ultrasonic pulse-echo method for evaluating these large structures. The large aperture of the ultrasound system allows for broader coverage and enhanced sensitivity to internal features such as cracks, voids, and embedded components within the concrete. By capturing data from multiple channels simultaneously, the system improves both resolution and depth penetration. A weighted sum of the Kirchhoff migration is used to post-process the data, resulting in better visualisation and a more detailed interpretation of the internal condition of the structure. This approach is particularly effective for thick and complex materials where conventional methods face limitations. In addition to the pulse-echo method, time-of-flight (TOF) tomography is used to provide quantitative analysis of internal structures. Time-picking techniques allow for the precise mapping of anomalies within the material, offering insights into the condition of concrete with varying geometries and compositions. Together, these two methods: pulse-echo imaging with the large-aperture multichannel system and TOF tomography imaging, offer different possibilities for assessing the internal condition of large concrete structures. The pulse-echo technique focuses on providing detailed images of structural defects, while the TOF tomography provides quantitative data on internal features. This combined approach offers a comprehensive and reliable method for the assessment of large infrastructures. T2 - ISNT NDE 2024 CY - Chennai, India DA - 12.12.2024 KW - NDT-CE KW - concrete KW - ultrasound KW - imaging KW - Kirchhoff KW - tomography PY - 2024 AN - OPUS4-62204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -