TY - CONF A1 - Kok, H. T. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Unger, Wolfgang A1 - Haag, R. T1 - 2D nanomaterials with switchable pathogen binding N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, mechanism of multivalent interactions at the graphene-pathogen interface are not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined isoelectric points and exposure, in terms of polymer coverage and functionality. Then, the switchable interactions of ZGNMs with E. coli were investigated to study the validity of the generally proposed “trapping” mechanism for inactivating pathogens by functionalized graphene derivatives. The ZGNMs were able to controllably trap and release E. coli by crossing their isoelectric points. T2 - 4th Erlangen Symposium on Synthetic Carbon Allortopes 2017 CY - Erlangen, Germany DA - 25.09.2017 KW - Graphene KW - XPS KW - NEXAFS KW - Zwitterionic graphene nanomaterials PY - 2017 AN - OPUS4-47084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emelyanenkov, S. A1 - Vengrinovich, V. A1 - Tillack, Gerd-Rüdiger T1 - 2D flaw's image restoration from magnetic leakage field data using singular value decomposition and Bayesian techniques T2 - 9th International Workshop on Electromagnetic Nondestruktive Evaluation CY - Paris, France DA - 2003-05-15 PY - 2003 AN - OPUS4-4419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Wilsch, Gerd T1 - 2D evaluation of heterogenous building materials using cluster algorithm N2 - In civil engineering the information about the quantitative ingress of harmful species like Cl⁻, Na⁺ and SO²⁻₄ is of great interest to evaluate the remaining life time of structures. These species are triggering different damage processes like the alkali-silica reaction (ASR) or the chloride-induced corrosion of the reinforcement. For the evaluation of the heterogeneous concrete it is necessary to discriminate between the different phases mainly cement matrix and aggregates. The transport processes are only proceeding in the cement matrix therefore the measured concentrations should be regarded to the cement content. For the 2D evaluation of element distributions different multivariate cluster-algorithms like k-means and Expectation-Maximization-algorithm (EM-algorithm) have been tested. The methods are compared and different figures of merit will be presented. After phase separation non-relevant information of the aggregates can be excluded. The ingress of harmful species is then quantified using chemometrics. Due to concrete cores from a parking deck the methods have been validated and verified with standard methods of wet-chemistry. T2 - 9th International Conference on Laser Induced Breakdown Spectroscopy (LIBS2016) CY - Chamonix, France DA - 12.09.2016 KW - LIBS KW - Building materials KW - Heterogeneity KW - Clustering PY - 2016 AN - OPUS4-37421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kloß, Heinz A1 - Santner, Erich A1 - Dimitriev, A. A1 - Shilko, E. A1 - Psakhie, S A1 - Popov, V. T1 - 2D and 3D modelling of indentation and scratching test on the base of Movable Cellular Automata (MCA) method T2 - International Conference on New Challenges in Mesomechanics 2002 CY - Aalborg, Denmark DA - 2002-08-26 PY - 2002 AN - OPUS4-3250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging chracterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Orientation KW - Cordierite KW - Beta-eucrytite KW - Porosity KW - Microcracking KW - Computed tomography KW - X-ray refraction PY - 2018 AN - OPUS4-45119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging characterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - Colloques de l"universite' de Limoges, France CY - Limoges, France DA - 17.10.2018 KW - Tomography KW - X-ray refraction KW - Porous ceramics KW - Microcracking PY - 2018 AN - OPUS4-46350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greiser, Sebastian A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Hunger, M. A1 - Jäger, Christian T1 - 29Si-27Al NMR to verify and distinguish Qn(mAl) sites in zeolites and geopolymers N2 - One-part-geopolymers, produced by addition of water to a mixture of solid silica and sodium alumi-nate, are a less exhaustively studied approach to form geopolymeric binders. Depending on the silica source, the reaction products show significant amounts of zeolite Na-A besides amorphous compounds. Previously, 29Si MAS NMR has been used to analyze the chemical structure of such one-part geopolymers, having crystalline structures and amorphous phases (Q2, Q3, Q4). In this work, pure zeolites and three different one-part-geopolymers cured for 1 day were investigated by 29Si-27Al TRAPDOR NMR. It was used to identify aluminum phases in overlapping silicon sites. Zeolites Na-X (Si/Al=1.4) and Na-Y (Si/Al=2.7) served as model systems to measure the TRAPDOR effect of the structural units Q4(mAl). Both materials show several Q4(mAl) signals, which are all separated by their chemical shifts. The more aluminum surrounds the silicon tetrahedron the higher are the normalized TRAPDOR difference signals (S0/∆S). The intensity ratios between Q4(mAl) to Q4({m-1}Al) of these signals is fixed but vary slightly between both zeolites. These results are transferred to the complex geopolymer structure. T2 - 57th Experimental nuclear magnetic resonance conference CY - Pittsburgh, PA, USA DA - 10.04.2016 KW - NMR KW - 29Si-27Al TRAPDOR MAS KW - Geopolymer KW - One-part formulation KW - Rice husk ash PY - 2016 AN - OPUS4-35864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Jäger, Christian T1 - 27Al-1H, 27Al-29Si REDOR and 29Si-27Al TRAPDOR NMR of One-part Geopolymers T2 - 36th Discussion Meeting of the Magnetic Resonance Spectroscopy division of the German Chemical Society (GDCh) CY - Berlin DA - 2014-09-29 PY - 2014 AN - OPUS4-32002 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Brouwers, H.J.H. A1 - Jäger, Christian T1 - 27Al-1H and 27Al-29Si Double Resonance NMR of One-part Geopolymers T2 - 5th International Conference Non-Traditional Cement & Concrete 2014 CY - Brno, Czech Republic DA - 2014-06-16 PY - 2014 AN - OPUS4-31406 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isecke, Bernd T1 - 25 Jahre Kathodischer Korrosionsschutz im Beton in Deutschland - -Historie,-Entwicklung, -Normung, -jüngste Ereignisse T2 - 8. Symposium Kathodischer Korrosionsschutzvon Stahlbetonbauwerken CY - Esslingen am Neckar, Germany DA - 2010-11-18 PY - 2010 AN - OPUS4-21936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -