TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Corrosion in pipe steels exposed to supercritical CO2 during carbon capture and storage CCS T2 - EUROCORR 2011 - Developing solutions for the global challenge N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, CO2-corrosion of the injection pipe steels has to be given special attention when engineering CCS-sites. To get to know the corrosion behaviour samples of the heat treated steel 1.72252CrMo4, used for casing, and the stainless injection-pipe steel 1.4034 X46Cr13 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CC 2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the CO 2 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCO 3 in both types of steel. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - CO2-storage PY - 2011 SP - Paper 1044-1 EP - Paper 1044-8 AN - OPUS4-28008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Static and dynamic long term corrosion experiments in CCS-conditions T2 - EUROCORR 2011 - Developing solutions for the global challenge N2 - Dealing with first corrosion screening experiments to predict the reliability and safety of Germanys first Carbon Capture and Storage site in the northern Bassin of Germany, northwest of the Capital Berlin, laboratory experiments have been established to simulate the particular conditions at T=60 °C, highly saline aquifer water similar to 'Stuttgart Aquifer', but only at ambient pressure. With mounting 2 independent full 2-grade titanium autoclave systems (running up to 250 bar and 300 °C) pressures up to p=100 bar are possible. In 2010 a specific corrosion chamber of 2-grade titanium working up to 100 °C, flowing aqui fer water with different gas mixtures was designed to fit to a high cycle fatigue testing machine. Long term fatigue experiments simulating fatigue crack growth under corrosive environments will soon start. These experiments may not only help engineering a CCS site, but results can be used to improve the maintenance of geothermal energy production sites, especially moved parts such as pumps and shafts. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - CO2 KW - Static corrosion KW - High cycle fatigue KW - Steel KW - CCS KW - CO2-storage KW - Corrosion PY - 2011 SP - 1 EP - 7 (Paper 1087) AN - OPUS4-28009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Linke, B. A1 - Schulz, Sabrina A1 - Kranzmann, Axel T1 - CO2-corrosion of steels exposed to saline water environment T2 - TMS 2011 - 140th Annual Meeting & Exhibition (Proceedings) N2 - With CO2 being one reason for climate change carbon capture and storage (CCS) is discussed to mitigate climate change. When emission gases are compressed into deep geological layers CO2-corrosion can easily cause failure of injection pipes. Different steels 42CrMo4, X46Cr13 and X20Cr13 were tested as well as X35CrMo17 and X5CrNiCuNb16-4 in a laboratory Environment similar to the conditions of the CCS engineering site at the Northern German Bassin. Samples were exposed to synthetic aquifer water saturated with technical CO2 at a flow rate of 3 NL/h. Corrosion rates obtained via mass loss vary in a wide range (0,005 to 2.5 mm/year). The precipitations within the corrosion scale revealed a complicated multiphase layer containing siderite FeCO3, goethite α-FeOOH, lepidocrocite γ-FeOOH, mackinawite FeS and akaganeite Fe8O8(OH)8Cl1,34 and spinelphases of various compositions. T2 - TMS 2011 - 140th Annual Meeting & Exhibition CY - San Diego, CA, USA DA - 27.02.2011 KW - CCS KW - Steel KW - Corrosion KW - Carbon Capture and Storage PY - 2011 DO - https://doi.org/10.1002/9781118062173.ch102 VL - 3 IS - 0807 SP - 807 EP - 814 AN - OPUS4-23472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -