TY - GEN A1 - Dietrich, P. A1 - Beblo-Vranesevic, K. A1 - Kjærvik, Marit A1 - Unger, Wolfgang A1 - Schwibbert, Karin A1 - Hardie, K. A1 - Brown, J. T1 - XPS surface analysis of bacterial samples N2 - This application note presents how EnviroESCA can be used to analyze bacterial samples under near ambient pressure conditions in various states of hydration using different levels of humidity. Such investigations of bacterial cell wall surfaces in their hydrated state are essential for studying biological interfaces at work. The use of innovative near-ambient pressure (NAP-)XPS instrumentation allows the detailed analysis of irregularly-surfaced biofilms. NAP-XPS enables the surface analysis of bacterial samples in their natural hydrated state without complex sample preparation techniques such as freeze-drying or fast-freezing, which are needed for XPS analysis in ultrahigh vacuum. KW - Near ambient pressure XPS KW - Biofilms PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/xps_surface_analysis_of_bacillus_subtilis_biofilms_final.pdf IS - Application Note #000399 SP - 1 EP - 5 CY - Berlin AN - OPUS4-44588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Thissen, A. A1 - Kulak, N. A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - XPS surface chemical analysis of aqueous solutions with EnviroESCA N2 - Water and aqueous reagents are essential in any biological process or system. But apart from a few special low vapor-pressure cases, liquids have not been accessible to any technique requiring UHV conditions. EnviroESCA opens up this exciting field of applications. In this paper first results from water based samples are presented as a proof of concept to demonstrate the special capabilities of EnviroESCA analyzing liquid samples. The following solutions were investigated under near ambient pressure conditions: i.) water, ii.) brine, iii.) an oil in water dispersion, iv.) aqueous iron(II) sulfate heptahydrate, and v.) a suspension of nano silver particles in water. KW - Surface Analysis KW - Near Ambient Pressure XPS KW - Aqueous Solutions PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394603 UR - http://www.enviro.specs.de/cms/upload/bilder/EnviroESCA/Applications/Liquids/Application-Note_EnviroESCA_Aqueous_Solutions.pdf N1 - BAM Mitarbeiter Beitrag im Acknowledgement definiert. IS - #000394 SP - 1 PB - SPECS CY - Berlin AN - OPUS4-39460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Near-ambient pressure XPS of hydrated Escherichia coli samples with EnviroESCA N2 - This application note presents how EnviroESCA can be used to analyze E. coli biofilms on silicon under near ambient pressure conditions in various states of hydration. Such investigations of the outer bacterial cell surface in their hydrated state are essential for studying biological interfaces at work. KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/nap_xps_of_escherichia_coli_samples.pdf IS - Application Note #000400 SP - 1 EP - 4 CY - Berlin, Germany AN - OPUS4-45720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang T1 - Non-destructive surface measurements N2 - Materials and chemical producers require detailed knowledge of surface chemistry for research into new products. One way to understand a surface without damaging it is to bombard it with an electron beam, causing its atoms to emit characteristic X-rays enabling identification. The measurement of these must be precise as many elements emissions are close in energy – traceable reference materials will ensure instruments using this technique are stable and accurate. KW - Metrology KW - EDS KW - EDX PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388647 UR - http://www.euramet.org/metrology-for-societys-challenges/metrology-for-industry/impact-case-studies-emrp-industry-theme/ SP - 1 EP - 2 CY - Teddington AN - OPUS4-38864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang T1 - Measuring organic layers N2 - Many innovative products - from touchscreens to solar panels to pharmaceuticals – utilise multiple organic layers to create complex functionality. New techniques have been developed to remove and measure layers individually enabling improved product development and assisting with quality assurance. However, manufacturers cannot be certain of the depth of layer being removed and new reference materials for these techniques are needed to increase uptake, and remove a major barrier to innovation. KW - Organic layers KW - XPS KW - SIMS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388656 UR - http://www.euramet.org/metrology-for-societys-challenges/metrology-for-industry/impact-case-studies-emrp-industry-theme/ SP - 1 EP - 2 CY - Teddington AN - OPUS4-38865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang T1 - Surface analysis for Alzheimer’s N2 - Modifying or controlling surface chemistry is important in new product development, quality control and research. This is particularly true where functionality of surfaces, thin films and interfaces are key to the application, such as organic solar cells and devices for medical diagnostics. Surface chemical analysis aims to provide quantitative elemental, chemical state and functional group information from the surface of materials, but requires comparable test data and improved measurement traceability. KW - Liposomes KW - Proteins KW - ToF-SIMS KW - Peptides KW - Mapping PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388663 UR - http://www.euramet.org/metrology-for-societys-challenges/metrology-for-industry/impact-case-studies-emrp-industry-theme/ SP - 1 EP - 2 CY - Teddington AN - OPUS4-38866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -