TY - GEN A1 - Völzke, Jule L. A1 - Hodjat Shamami, P. A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Weller, Michael G. T1 - High-purity corundum as support for affinity extractions from complex samples T2 - Preprints N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids are used to introduce functional groups for further conjugations. The common cross-linker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter is oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower nonspecific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by SDS-PAGE. A binding capacity of 1.8 mg IgG per g of corundum powder was achieved. The advantages of corundum are the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, and flexible application. KW - Protein KW - Bioseparation KW - Purification KW - Immunoprecipitation KW - Affinity chromatography KW - Polyglycerol KW - Glutaraldehyde KW - Linker KW - Bioconjugation KW - Self-assembled monolayer (SAM) KW - Periodate oxidation KW - Reductive amination KW - Antibodies KW - Igg KW - Immunoglobulins KW - Carrier KW - Solid phase KW - Hyperbranched polymer KW - Aromatic amino acid analysis aaaa PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555142 DO - https://doi.org/10.20944/preprints202208.0004.v1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tchipilov, Teodor A1 - Raysyan, Anna A1 - Weller, Michael G. T1 - Methods for the quantification of particle-bound protein – Application to reagents for lateral-flow immunoassays (LFIA) T2 - Preprints N2 - Protein immobilization for the functionalization of particles is used in various applications, including biosensors, lateral-flow immunoassays (LFIA), bead-based assays, and others. Common methods for the quantification of bound protein are measuring protein in the supernatant before and after coating and calculating the difference. This popular approach has the potential for a significant overestimation of the amount of immobilized protein since layers not directly bound to the surface (soft protein corona) are usually lost during washing and handling. Only the layer directly bound to the surface (hard corona) can be used in subsequent assays. A simplified amino acid analysis method based on acidic hydrolysis and RP-HPLC-FLD of tyrosine and phenylalanine (aromatic amino acid analysis, AAAA) is proposed to directly quantify protein bound to the surface of gold nano- and latex microparticles. The results are compared with indirect methods such as colorimetric protein assays, such as Bradford, bicinchoninic acid (BCA), as well as AAAA of the supernatant. For both particle types, these indirect quantification techniques show a protein overestimation of up to 1700% compared to the direct AAAA measurements. In addition, protein coating on latex particles was performed both passively through adsorption and covalently through EDC/sulfo-NHS chemistry. Our results showed no difference between the immobilization methodologies. This finding suggests that usual protein determination methods are no unambiguous proof of a covalent conjugation on particles or beads. KW - Soft protein corona KW - Hard protein corona KW - Gold particles KW - Nanoparticles KW - Mikroparticles KW - Antibody KW - Bioconjugation KW - Protein quantification KW - Supernatant KW - Sodium chloride method KW - Covalent conjugation KW - Latex particles KW - Lateral flow immunoassays PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545365 DO - https://doi.org/10.20944/preprints202203.0332.v1 SP - 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-54536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -