TY - CONF A1 - Retzlaff, J. A1 - Bronstein, Z. A1 - Müller-Rochholz, J. A1 - Böhning, Martin A1 - Robertson, Daniela A1 - Schröder, Hartmut T1 - Oxidative resistance of geosynthetics: practical aspects and developments of testing at elevated temperature and oxygen pressure T2 - EuroGeo4, 4th European Geosynthetics Conference, September 7-10, 2008, Edinburgh, UK N2 - Service life of geosynthetics made of polyolefin materials is mainly limited by oxidative degradation. Durability of polyolefin products depend on formulation, morphology resulting from manufacturing, design and particularly on the antioxidants used. Although the fundamental oxidative reactions are known, the complex effect of geosynthetic characteristics and external influences mean that durability assessments require practical tests. The assessment of oxidative durability involves exposure to accelerating conditions as well as the material characterisation with respect to the state of stabilisation and/or degradation (e.g. by tensile testing and/or oxidation induction time). The autoclave test developed by BAM for durability assessments of polyolefin geosynthetics is based on the simultaneous application of moderately elevated temperatures (up to 80 degrees Celsius) and elevated oxygen pressures (up to 5.0 MPa) in combination with a surrounding aqueous medium. Thus this test method provides several advantages in comparison to conventional oven testing, especially with respect to test duration, impact of surrounding environment and the potential to differentiate and rank oxidative resistance between products of very different dimensions (surface/volume) and stabilisation. In view of the increasing demand for durability assessments of geosynthetic products with lifetimes significantly exceeding 25 years, the contribution is focused on practical aspects concerning implementation and optimisation of test procedures, conditions and evaluation of results. Furthermore, advanced approaches based on multiple exposure conditions will also be included and corresponding calculations of expected service life in typical applications will be evaluated with respect to significance and repeatability. Thereby involved standards and recommendations - such as EN ISO 13438, Part C or EAG-EDT - are considered. T2 - EuroGeo4, 4th European Geosynthetics Conference CY - Edinburgh, UK DA - 2008-09-07 KW - Ageing KW - Degradation KW - HDPE KW - Laboratory test KW - Oxidation KW - Polypropylene PY - 2008 IS - Paper 178 SP - 1 EP - 4 AN - OPUS4-18423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Retzlaff, J. A1 - Müller-Rochholz, J. A1 - Klapperich, H. A1 - Böhning, Martin T1 - The behaviour of geosynthetics under cyclic load T2 - EuroGeo4, 4th European Geosynthetics Conference, September 7-10, 2008, Edinburgh, UK N2 - Whenever geosynthetics are used to reinforce or stabilise infrastructural elements such as road- and railways, bridge abutments, run- and taxiways on airports or to protect coastlines of canals and other steep slopes they may be exposed to cyclic loads. Therefore, a reduction factor for dynamic effects on the geosynthetic tensile strength has been included into the calculation of the Long Term Design Strength (LTDS). An approach to assess the behaviour of geosynthetics is to adopt Woehler- or Smith graphs and Haigh-diagrams for polymers. This is because an endurance limit for polymers, which defines an infinite life under a defined cyclic load, has not been seen so far. A huge amount of mechanical testing is needed to predict the behaviour of geosynthetics against this particular background. To reduce these efforts while getting an indication of the cyclic effect on geosynthetics, a combined method of mechanical and chemical analysis has been developed. The pure tensile strength tests to determine the residual strength after cyclic stress has been amended by IR-spectroscopy and Differential Scanning Calorimetry (DSC). In this context the chain change model of PET has been proven as valid for cyclic loads as well, which helps to define the endurance limit of materials made out of PET. For polyolefins such as PP and PE, a limit for the maximum alternating load has been identified at the point of the stress strain graph where the actual and the numerical stress of a material diverge from each other. Cyclic tensile strength tests have been carried out in a hydraulic test frame. The test parameters have been set to simulate the service life of a railway bed trafficked by high speed trains (ICE). T2 - EuroGeo4, 4th European Geosynthetics Conference CY - Edinburgh, UK DA - 2008-09-07 KW - Cyclic load KW - Dynamic loads KW - Laboratory test KW - Reduction factor KW - Reinforcement KW - Stiffness PY - 2008 IS - Paper 179 SP - 1 EP - 7 AN - OPUS4-18425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Stephan, Ina T1 - International Biodeterioration Research Group - Functional Fluids Working Party (WP) - Annual Report 2003 KW - Metal working fluid KW - Lithographic fount solutions KW - Methodology KW - Laboratory test PY - 2004 SP - 1 EP - 2 PB - International Biodeterioration Research Group CY - Hampshire, UK AN - OPUS4-7601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Stephan, Ina T1 - IBRG Functional Fluids Group: Annual Report 2004 KW - Metal working fluid KW - Lithographic fount solutions KW - Methodology KW - Laboratory test PY - 2005 SP - 1 PB - International Biodeterioration Research Group CY - Hampshire, UK AN - OPUS4-7600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -