TY - CONF A1 - Maiwald, Michael A1 - Schmid, Thomas T1 - Möglichkeiten zur Sonderprobenanalytik - Gemeinsame Aktivitäten mit dem Salsa-Applikationslabor der Humboldt Universität zu Berlin N2 - Troubleshooting Samples Analytics: Impurities in products: unexpected & unwanted occurrence, unknown identity, analytical method unclear, often various analytical methods, necessary, short response time important (< 1 d), benefits: allocation of its source within hours safes cost • Investigations planned, coordinated and documented by TSA team • Variety of analytical methods available T2 - 3. Analytic-City-Forum Berlin Adlershof CY - Berlin, Germany DA - 08.10.2015 KW - Troubleshooting Samples Analytics KW - TSA KW - Sonderprobenanalytik KW - Salsa KW - Applikationslabor PY - 2015 AN - OPUS4-36139 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Hille, Falk T1 - Reliability assessment of monitored jacket support structures of offshore wind turbines N2 - We present a concept for assessing the system reliability of monitored jacket support struc-tures of offshore wind turbines subjected to fatigue. The concept assumes that a structural health monitoring system periodically records accelerations of the jacket structure caused by ambient excitations. The recorded data is processed by a stochastic subspace-based damage detection algorithm to provide information on the global damage state of the jacket structure. This information is generally uncertain. To determine the effect of such uncertain global monitoring information on the structural reliability, the deterioration state of the jacket structure is described by a probabilistic fatigue deterioration model of all structural elements, which considers stochastic dependence among element fatigue behavior. The system deterioration model is coupled with a probabilistic structural model to compute the system failure probability. Global damage detection information is included in the reliability assessment through Bayesian updating of the system failure probability. T2 - RAVE Offshore Wind R&D Conferenve 2015 CY - Bremerhaven, Germany DA - 13.10.2015 KW - Offshore wind turbines KW - Jacket structures KW - Reliability KW - Monitoring PY - 2015 AN - OPUS4-36533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rohn, Holger T1 - The VDI guideline series 4800 resource efficiency: an approach for increasing resource efficiency with the aim of conservation of natural resources in the industrial sector N2 - In 2011, the German Association of Engineers (VDI) started working on a set of guidelines towards increased resource efficiency. These guidelines represent a framework that defines resource efficiency and outlines considerations for the producing industry. A special guideline for SMEs is included as well as guidelines on methodologies for evaluating resource use indicators, such as the cumulative raw material demand of products and production systems. Resource efficiency, defined here as the ratio of specific quantifiable use to natural resource consumption, can be evaluated by defining a function which expresses the specific use and quantifies the resource requirements through a set of indicators (use of raw materials, energy, water, land and ecosystem services including sinks). The results from this also depend on the system boundary parameters and the allocation rules for by-products and waste treatment options. Optimising resource use is possible at all stages of a product’s or production system’s life cycle chain (raw material extraction, production and manufacturing, use and consumption, and the end-of-life stage). VDI guidelines are widely accepted across Germany’s industrial sector and therefore represent an important means of mainstreaming resource efficiency in this target area. As well as providing a methodological framework, the guidelines describe strategies and measures towards increasing resource efficiency, and they enable industrial producers and service providers to identify potential areas of improvement. The full article presents an overview of the methodology and contents of these guidelines and discusses their impact in achieving absolute reductions in the industrial use of natural resources. T2 - World Resources Forum 2015 CY - Davos, Switzerland DA - 11.10.2015 KW - Resource Efficiency KW - Life cycle thinking KW - Products and production systems KW - Standardization PY - 2015 AN - OPUS4-35674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -