TY - CONF A1 - Richter, M. A1 - Schultz, C. A1 - Bonse, Jörn A1 - Pahl, H.-U. A1 - Endert, H. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Stegemann, B. A1 - Fink, F. T1 - Laser-ablation behavior of thin-film materials used in silicon and CIGSe based solar cells N2 - Structuring of thin-film photovoltaic modules requires basic knowledge of the laser – thin-film interaction in order to adapt the accessible laser parameters, like wavelength, power, repetition rate and scribing speed whilst taking into account the specific material properties of the layer. We have studied the nanosecond laserablation behavior of corresponding layers (i) of silicon based thin-film solar cells with a-Si/µc-Si tandem absorber type and (ii) of back contact and absorber layer of CIGSe solar cells. The respective ablation threshold fluences were determined as integrative parameters describing the specific laser – material interaction. For the threshold determination we used two different methods and developed a new analytical approach taking into account scribing through the glass substrate as it is preferred for most structuring processes. This was done by analyzing the thin film ablation results by means of optical microscopy, profilometry, scanning electron microscopy (SEM). Moreover, we determined the incubation coefficient of the regarded material layers which allows us to predict quantitatively the influence of the spot overlap on the scribing threshold. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.011 KW - Laser processing KW - Ablation KW - Incubation KW - a-Si/my-Si KW - CIGS PY - 2011 SN - 3-936338-27-2 DO - https://doi.org/10.4229/26thEUPVSEC2011-3DV.2.8 SP - 2943 EP - 2946 AN - OPUS4-24997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Emission of X-rays during ultrashort pulse laser processing N2 - Ultrashort pulse laser materials processing can be accompanied by the production of X-rays. Small doses per laser pulse can accumulate to significant dose rates at high laser pulse repetition rates which may exceed the permitted X-ray limits for human exposure. Consequently, a proper radiation shielding must be considered in laser machining. A brief overview of the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser material processing in air is presented. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Ultra-short pulse laser processing KW - Laser-induced X-ray emission KW - Radiation protection PY - 2021 SP - 1 EP - 5 AN - OPUS4-53866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission during ultrashort pulse laser processing N2 - The industrial use of ultrashort laser pulses has made considerable progress in recent years. The reasons for this lie in the availability of high average powers at pulse repetition rates in the several 100 kHz range. The advantages of using ultrashort laser pulses in terms of processing precision can thus be fully exploited. However, high laser intensities on the workpiece can also lead to the generation of unwanted X-rays. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose can become significant for high-repetition-rate laser systems so that X-ray exposure safety limits must be considered. The X-ray emission during ultrashort pulse laser processing was investigated for a pulse duration of 925 fs at 1030 nm wavelength and 400 kHz repetition rate. Industrially relevant materials such as steel,aluminum and glass were treated. Tungsten served as reference. X-ray spectra were recorded, and X-ray dose measurements were performed for laser treatment in air. For laser intensities > 2 × 10^13 W/cm2, X-ray doses exceeding the regulatory exposure limits for members of the public were found. Suitable X-ray protection strategies are proposed. T2 - SPIE Photonics West CY - San Francisco, USA DA - 02.02.2019 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Radiation protection PY - 2019 SN - 978-1-5106-2459-7 DO - https://doi.org/10.1117/12.2516165 SN - 0277-786X SN - 1996-756X VL - 10908 SP - 1090802-1 EP - 1090802-7 PB - SPIE - The international society for optics and photonics CY - Bellingham, WA, USA AN - OPUS4-47510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures (LIPSS) - A scientific evergreen N2 - The current state in the field of laser-induced periodic surface structures (LIPSS, ripples) is reviewed. Their formation mechanisms are analyzed in ultrafast experiments (time-resolved diffraction and polarization controlled double-pulse experiments) and technological applications are demonstrated. T2 - Conference on Lasers and Electro-Optics (CLEO) - Science and Innovations 2016 CY - San Jose, CA, USA DA - 05.06.2016 KW - Laser materials processing KW - Optics at surfaces KW - Ultrafast phenomena KW - Laser-induced periodic surface strcutures (LIPSS) KW - Femtosecond laser ablation PY - 2016 SN - 978-1-943580-11-8 DO - https://doi.org/10.1364/CLEO_SI.2016.STh1Q.3 SP - STh1Q.3, 1 EP - 2 PB - Optical Society of America AN - OPUS4-37072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Mota Gassó, Berta A1 - Sturm, Heinz A1 - Pauli, Jutta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Influence of effects on nano and micro scale on the rheological performance of cement paste, mortar and concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 25. Workshop und Kolloquium Rheologische Messsungen an Baustoffen CY - Regensburg, Germany DA - 02.03.2016 KW - Rheology KW - Cement KW - Concrete KW - Superplasticizer KW - Nano scale PY - 2016 SN - 978-3-7345-1313-8 SP - 294 EP - 307 PB - tredition CY - Hamburg AN - OPUS4-36862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Anne-Kathrin A1 - Wachtendorf, Volker A1 - Sturm, Heinz A1 - Meyer-Plath, A. ED - Ziegahn, K.-F. T1 - Wirkung simulierter Sonnenstrahlung auf Kohlenstoffnanoröhren gefüllte Polymerkomposite N2 - Durch das Füllen von Polymeren mit Nanopartikeln oder Nanoröhren werden verbesserte Materialeigenschaften z.B. bezüglich mechanischer Stabilität, Witterungsbeständigkeit, elektrischer Leitfähigkeit und Flammschutz angestrebt. Mit dem vermehrten Einsatz derartiger Nanokomposite gewinnen aber auch Fragen des Umwelt- und Gesundheitsschutzes an Bedeutung. Es gilt zu klären, ob durch Herstellung, Benutzung und Witterungsbeanspruchung möglichweise nanoskalige Partikel freigesetzt werden können. Zu diesem Zweck wurden mit Kohlenstoffnanoröhren, Carbon Nanotubes (CNT), gefüllte Polymerkomposite spektral breitbandig wie auch quasimonochromatisch unter variierter klimatischer Beanspruchung bestrahlt. Die sich vor allem an der Oberfläche mit der Alterung abzeichnenden Veränderungen wurden mikroskopisch und spektroskopisch charakterisiert. T2 - 43. Jahrestagung der GUS 2014 CY - Stutensee-Blankenloch, Germany DA - 26.03.2014 KW - Nanokomposit KW - Nanopartikel KW - CNT KW - Bewitterung KW - Bestrahlung KW - Simulierte Sonnenstrahlung KW - Alterung PY - 2014 SN - 978-3-9816286-0-9 SP - 65 EP - 74 AN - OPUS4-31160 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seuthe, T. A1 - Grehn, M. A1 - Mermillod-Blondin, A. A1 - Bonse, Jörn A1 - Eberstein, M. T1 - Requirements on glasses for femtosecond-laser based micro-structuring N2 - In this work, glasses with systematically varied compositions were manufactured and irradiated by single Ti:sapphire fs-laserpulses (800 nm, 120 fs), focused at the surface and into the bulk of the glass materials. The samples were tested for their ablation threshold fluence as well as for structural changes using µ-Raman-spectroscopy. Correlations between the glass composition, the material-ablation on the glass surface and the permanent changes of the refractive index inside the glass volume after the irradiation by fs-laser pulses were obtained. The results show, that the structural modifications found at the surface of the glasses and inside its volume are closely related. However, while the ablation threshold fluence of the glass surface primarily depends on the glass dissociation energy, the permanent refractive index change inside the volume is rather determined by its ability for absorbing the fs-laser pulses and the subsequent relaxation processes. The results of this work provide some guidance on how the glass composition can be varied in order to optimize the fs-laser induced modification of dielectrics. T2 - 11th International Conference on Ceramic Interconnect & Ceramic Microsystems Technologies CY - Dresden, Germany DA - 20.04.2015 PY - 2015 SN - 978-1-5108-0456-2 DO - https://doi.org/10.4071/CICMT-TA24 SP - 47 EP - 53 PB - Curran CY - Red Hook, NY, USA AN - OPUS4-34755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescent chars by advanced small scale tests combined with µ-CT N2 - Testing of intumescent coatings for Steel is usually done in intermediate scale or even full scale experiments and is hence quite expensive. We developed two complementary small scale tests, simulating fully developed Tire. First is a strongly modified electrical muffle furnace, which is now able to follow the Standard temperature-time curve (according EN 1363-1) for 90 min in a very accurate manner. Düring the experiment backside temperatures are recorded and the growth of the char is observed with a custom made high temperature endoscope. Second is a testing apparatus based on a propane-oxygen-bumer for direct severe flame impingement of coated samples, reaching temperatures far above 1500 °C. Our small scale samples are coated Steel plates of a size of 75 x 75 x 2 mm3. The structure-propertyrelation between additives, thermal properties and morphology of the char were examined using a well determined series of samples consisting of basic composition mixed with different additives. With the burner-testing-apparatus we studied the behavior of a high performance coating, which shows a transformation of the carbonaceous char into a ceramic foam at temperatures as high as 1600 °C. Nondestructive micro-computed tomography was used to characterize the morphology of the char. According to the structure of the foams we used different analytic methods like cell-detection or wallthickness-analysis. Additional scanning electron and optical microscopy were performed. The combination of the CT-data with the measured backside temperatures of the different samples provides us a deep understanding of the interaction between isolating properties and morphology of intumescent chars. T2 - Fire and materials 2015 - 14th International conference and exhibition CY - San Francisco, CA, USA DA - 02.02.2015 PY - 2015 SP - 478 EP - 483 PB - Interscience Communications AN - OPUS4-32710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized cells onto which the incident light is focused via microlenses. This approach allows to increase the cell efficiency and to realize much more compact modules compared to macroscopic concentrator devices. At the same time, expensive raw materials can be saved, which is of interest, for example, with respect to indium in the case of copper-indium-gallium-diselenide (CIGSe) thin film solar cells. Two methods to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum film or the underlying glass substrate and a subsequent physical vapor deposition were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer was utilized to selectively deposit combined copper-indium precursor pixels on the molybdenum back contact of the solar cell. Post-processing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in functional CIGSe solar cells. T2 - 10. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 16.11.2017 KW - Copper indium gallium diselenide (CIGSe) KW - Micro solar cell KW - Femtosecond laser KW - Laser ablation KW - Laser-induced forward transfer (LIFT) PY - 2017 SN - 1437-7624 VL - 2 SP - 1 EP - 4 PB - Hochschule Mittweida CY - Mittweida AN - OPUS4-42988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -