TY - CONF A1 - Hofmann-Böllinghaus, Anja A1 - Webb, A. T1 - Changes in façade regulations T2 - Conference Proceedings Interflam 19 N2 - Recent facade fires worldwide have driven change in regulations for façade fire safety in different parts of the world. The Grenfell Tower fire 2017 in London triggered a thorough investigation of many aspects of the fire. One investigation was about the UK building regulations from Dame Judith Hackett 1,2. This investigation compares the UK with the situation other parts of the world. T2 - Interflam 2019 CY - London, UK DA - 01.07.2019 KW - Facade KW - Regulations KW - Australia KW - UK KW - Germany PY - 2019 SP - 183 EP - 197 PB - Interscience CY - London AN - OPUS4-48426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja T1 - What can we learn from European train fire safety regulations for fire safety regulations for busses? T2 - Proceedings from 5th International Conference on Fire in Vehicles - FIVE 2018 N2 - Recent bus fires in Europe, such as the bus fire in France 2015 with 43 fatalities and the bus fire in Germany 2017 with 19 fatalities, show that these fires can be very hazardous and time for escape can be too short. Recently, several fire safety measures came into force for busses. Engine compartment suppression systems will be mandatory for all busses in Europe. This is a big step in fire safety as about 80 % of fires start in the engine compartment. However, in several recent bus fires a time of less than 5 minutes has been reported from detection of the fire to a fully developed fire. As normally many people are on board of a bus, a bus fire is not comparable to fire in a home. Especially for people with reduced mobility or for fires after a collision the available times for escape are too short. When the fire service is on scene the transition to a fully developed fire might have happened already. Passengers who are not able to escape in this short period of time mostly cannot be rescued by the fire service even with quick response times because of the dramatic fire development. Fires that do not start in the engine compartment but develop in the cabin are rarer but extremely dangerous because fire and smoke spread very rapidly. The reason for the fast fire and smoke development in the cabin are the materials which are used. Over the last tens of years materials in busses had major developments. The amount of plastic in the cabin has grown significantly. In a modern coach the biggest fire load often is not the fuel anymore but the interior materials. Bus fire safety is mainly regulated by ECE regulations R 118 and R 107. A comparison with European standards for trains shows that for trains, in contrast to busses, a holistic fire concept exists. Fire scenarios as well as escape scenarios and passenger behaviour are taken into account, resulting in fire safety regulations on a high level compared with bus regulations. In contrast to regulations for train materials no limits for heat or smoke production are given for bus materials. Larger heat release values promote more rapid fire spread. Also smoke production and toxicity are key factors in fires. The smoke reduces the visibility in the case of fire, and together with the toxicity of the smoke can make escape from the vehicle impossible. Figure 1 shows the remains of the bus from the recent severe bus fire in Germany in 2017. As a result of experience with real cases and results from research projects we think it is necessary to develop a holistic fire safety concept for busses as it exists for other transport means like railways. The fire safety concept should include vehicle configuration and design as well as areas of use, e.g. use in cities, use in long-distance traffic on motorways and use in tunnels. T2 - FIVE Conference CY - Boras, Sweden DA - 03.10.2018 KW - Fire safety concept KW - Busses KW - Trains KW - Reaction-to-fire PY - 2018 SN - 978-91-88695-95-6 VL - 2018 SP - 215 EP - 225 PB - RISE CY - Boras, Schweden AN - OPUS4-46544 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Georg, Paul A1 - Block, R. A1 - Heister, W. A1 - Holl, S. A1 - Pulm, A. A1 - Hofmann-Böllinghaus, Anja T1 - A score regarding the need for assistance - considering pedestrians with impairments in evacuation planning T2 - Proceedings of the 5th Magdeburger Fire and Explosion Prevention Day N2 - The capabilities of pedestrians for evacuation have a significant impact on the time required to reach a safe place. Usually, the evacuation is split into two main stages: pre-movement-phase and movement-phase. For both a large number of studies investigate different representations of behaviour and impacts. But the influence of impairments is usually not taken into account. In addition, most of the scientific researches focus the investigation of the movement phase. This publication presents a novel approach to score the need for assistance and to estimate the effect on evacuation performance. The proposed score considers characteristic impairments in three dimensions of behaviour: reception, perception and realisation. In an unannounced evacuation training in a sheltered workshop, the evacuation behaviour and pre-movement phase were analysed. The analysis indicates that the pre-movement time depends on the kind of impairment as well as on organisational boundaries. Despite the special needs for assistance, the evacuation process in a sheltered workshop is quite similar to other sub-populations. T2 - 5. Magdeburger Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Human behaviour KW - Human factors KW - Egress KW - Evacuation KW - Persons with impairments PY - 2017 SN - 978-3-00-056201-3 DO - https://doi.org/10.978.300/0562013 SP - 1 EP - 13 CY - Magdeburg AN - OPUS4-40051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja A1 - Kaudelka, Sven A1 - Gnutzmann, Tanja A1 - Rabe, Frederik A1 - Klippel, A. T1 - Influence of modern furniture on the fire development in fires in homes T2 - Tagungsband N2 - About 80 % of all fire fatalities in Germany occur in fires in homes1. UK statistics show that living and bed room fires are more often responsible for fatalities than kitchen fires although kitchen fires occur much more often2. It has been known for some time that modern materials tend to burn differently from older materials and it has been acknowledged that the amount of combustible plastics in homes has increased significantly over the last decades3-7. To investigate the influence of modern furniture and ventilation conditions of fires in homes a series of four large scale tests in two living rooms with adjacent rooms was performed by BAM and the Frankfurt fire service8. Two living rooms, one with older furniture and one with modern furniture were tested twice each. Each test started with the ignition of a paper cushion on an upholstered chair. The influence of modern materials on the fire development was investigated as well as the influence of the ventilation on the fire development. Two tests with closed windows and two tests with open windows were performed. Temperatures were measured in the living rooms and the adjacent rooms, gas compositions were measured in the adjacent rooms and videos were taken in all rooms. The ventilation as well as the different materials influenced the fire development regarding temperatures in the rooms and smoke production and composition significantly. The fire in the living room with modern furniture developed faster than the same setting with older furniture. More ventilation (open window) led to higher temperatures in the rooms and faster fire development as well. Smoke gas composition was measured in the adjacent rooms to assess the positive effect for a person being in the adjacent room and not in the room of fire origin. In all settings an upholstered chair was the first burning item. The modern upholstered chair was investigated in three pre-experiments under different conditions to enhance the understanding of the living room fires. The measured mass losses and derived mass loss rates have been used for numerical modelling of the pre-experiments. T2 - Fire and Materials Konferenz CY - San Francisco, USA DA - 06.02.2017 KW - Furniture KW - Fire KW - Large scale PY - 2017 SP - 280 EP - 294 PB - Interscience AN - OPUS4-42925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja T1 - Fire Safety of Facades T2 - Conference Proceedings Interflam 2016, 14th International Fire Science and Engineering Conference N2 - Fire safety of façades is a complex topic regarding the different façades systems which differ in build and as well in possible fire safety measures. A great variation of materials is used in façade systems which also have a wide spread variation of reaction-to-fire behaviour. As building regulations are national legislations the implementation of fire safety of façade systems in building regulations differs significantly in different countries. Therefore the testing and classification of façade systems differs as well hugely. Approaches to regulate the material only are as well in use as to concentrate mainly on large scale testing and several approaches in between. It was not possible yet to find a harmonized test for façades in Europe. However, in many countries severe fires with combustible façade systems brought the challenges of fire safety of façades to a greater awareness. An overview over different large scale test and implementation in building regulations shows the differences. Challenges in fire safety of façades regarding the testing, the weathering, aging and damage of the systems and the impact on fire safety are discussed. T2 - Interflam 2016 CY - London, UK DA - 04.07.2016 KW - Facades KW - Fire safety KW - Combustible PY - 2016 SN - 978-0-9933933-2-7 VL - 2016 SP - 1095 EP - 1102 PB - Interscience Communications CY - Bromley, UK AN - OPUS4-36896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja A1 - Boström, L. A1 - Anderson, J. A1 - Chiva, R. A1 - Guillaume, E. A1 - Colwell, S. A1 - Toth, P. T1 - European approach to assess the fire performance of façades T2 - Proceedings Interflam 2019 N2 - Several attempts have been made in the past to develop a European harmonized testing and assessment method for façades before the European commission decided to publish a call for tender on the topic. A project consortium from five countries (Sweden, UK, France, Germany and Hungary) applied to the call for tender and was contracted to develop a European approach to assess the fire performance of façades. 24 sub-contractors and 14 stakeholder entities were part of the project. The objective of the European project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European approach agreed by SCC. In addressing this objective, the project team was asked to consider a number of issues which are presented and discussed. T2 - Interflam 2019 CY - London, UK DA - 01.07.2019 KW - Facade KW - European KW - Fire scenario KW - Testing PY - 2019 SP - 213 EP - 227 PB - Interscience AN - OPUS4-48428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klippel, Andrea A1 - Hofmann-Böllinghaus, Anja T1 - Quantitative risk analysis and numerical investigation to determine critical fire scenarios in the environment of handicapped people T2 - Proceedings Interflam 2019 N2 - Crisis management, particularly the evacuation of handicapped People during a fire scenario presents a highly demanding challenge for nursing staff and rescue forces on site. The German research Project SiME is an interdisciplinary cooperation of university and non-university research institutions as well as medium-sized companies, which work together to develop strategies to manage such critical scenarios. In the SiME project, which is funded by the German Federal Ministry of Education and Research, evacuation characteristics of pedestrians with physical, mental or age-related disabilities are investigated to fit consisting numerical evacuation models with data. One of the major tasks of the OvGU was to set up a database of scenarios related to fire, explosion or substance releases in the working and living environment of handicapped people. Therefore, more than 463 fire Events occurring over the last decade in Germany were documented in this database and categorized by a suitable assignment of characteristics e.g. location of fire, ignition source, number of fatalities and injured. The evaluated data were the basis for carrying out a quantitative risk analysis. Thus event trees were set up for different integrative infrastructures with which occurrence probabilities for different scenarios could be calculated for each path. The extent of damage, as a quantity describing the impact, was assumed to be personal injury or death or serious injury. By a risk assessment critical Scenarios could be derived from the risk analysis. T2 - Interflam 2019 CY - London, UK DA - 1.07.2019 KW - Evacuation PY - 2019 VL - 2019 SP - 795 EP - 806 PB - Interscience CY - London, UK AN - OPUS4-48649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jörres, R. A1 - Ehret, M. A1 - Karrasch, S. A1 - Herbig, B A1 - Schierl, R. A1 - Seeger, Stefan A1 - Langner, J. A1 - Nowak, D. T1 - Respiratorische Effekte von Drucker- und Kopierer-Emissionen – eine kontrollierte Expositionsstudie T2 - Pneumologie N2 - Die möglichen gesundheitlichen Auswirkungen von Laserdruckeremissionen sind immer wieder Gegenstand von Aufmerksamkeit. Wir untersuchten die Effekte 75-minütigerExpositionen gegenüber Low-Emittern (LE, Untergrund 2000 – 4000 UFP/cm3) und High-Emittern (HE, 100.000 UFP/cm3). T2 - 56. Kongress der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e.V. CY - Berlin, Germany DA - 18.03.2015 KW - Expositionsstudie in-vivo KW - Bürogeräte KW - Emissionen KW - Partikel PY - 2015 DO - https://doi.org/10.1055/s-0035-1544873 VL - 69-V516 SP - V516 PB - Thieme CY - Stuttgart AN - OPUS4-38752 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hartmann, S. A1 - Shaporin, A. A1 - Hermann, S. A1 - Bonitz, J. A1 - Heggen, M. A1 - Meszmer, P. A1 - Sturm, Heinz A1 - Hölck, O. A1 - Blaudeck, T. A1 - Schulz, S. E. A1 - Mehner, J. A1 - Gessner, T. A1 - Wunderle, B. T1 - Towards nanoreliability of CNT-based sensor applications: Investigations of CNT-metal interfaces combining molecular dynamics simulations, advanced in situ experiments and analytics T2 - 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems N2 - In this paper we present results of our recent efforts to understand the mechanical interface behaviour of single-walled carbon nanotubes (CNTs) embedded in metal matrices. We conducted experimental pull-out tests of CNTs embedded in Pd or Au and found Maximum forces in the range 10 - 102 nN. These values are in good agreement with forces obtained from molecular Dynamics simulations taking into account surface functional Groups (SFGs) covalently linked to the CNT material. The dominant failure mode in experiment is a CNT rupture, which can be explained with the presence of SFGs. To qualify the existence of SFGs on our used CNT material, we pursue investigations by means of fluorescence labeling of surface species in combination with Raman imaging. We also report of a tensile test system to perform pull-out tests inside a transmission electron microscope to obtain in situ images of CNT-metal interfaces under mechanical loads at the atomic scale. T2 - 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems CY - Budapest, Hungary DA - 20.4.2015 KW - Carbon nanotube CNT KW - Metal matrix KW - Pull-out test KW - Molecular dynamics simulation KW - Surface functional groups KW - Fluorescence labeling KW - Raman imaging KW - Tensile test inside a TEM PY - 2015 SN - 978-1-4799-9950-7 VL - 2015 SP - 1 EP - 8 PB - IEEE AN - OPUS4-37625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions T2 - PAPERS AND POSTERS PROCEEDINGS 15th International Congress on the Chemistry of Cement N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this paper presents experimental results about the influence of delayed addition of PCEs on the Hydration of cement and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3A pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less Retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 SP - 1 EP - 8 AN - OPUS4-49104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -