TY - CONF A1 - Pech May, Nelson Wilbur A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - Robot-assisted infrared thermography for surface breaking crack detection on complex shaped components N2 - Infrared thermography using a focused (spot or line) beam has proved to be effective for detection of surface breaking cracks on planar samples. In this work, we use the same principle, but applied to complex shaped components, like a rail section, a gear, and a gas turbine blade. We use a six-axis robot arm to move the sample in front of our thermographic setup. Several scanning paths and thermographic parameters are explored: scanning speed, density of points in each scanning slice, laser power and camera frame-rate. Additionally, we explore semi-automatic evaluation algorithms for crack detection, as well as 2D-to-3D registration of the found indications. T2 - SPIE Future Sensing Technologies, 2023 CY - Yokohama, Japan DA - 18.04.2023 KW - Complex shaped component testing KW - Flying line thermography KW - Robot-assisted thermography KW - Crack detection KW - Robot path planning KW - 2D/3D thermographic registration PY - 2023 DO - https://doi.org/10.1117/12.2666757 VL - 12327 SP - 1 EP - 3 PB - SPIE Future Sensing Technologies AN - OPUS4-59867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Antimony in incineration bottom ash – Leaching behavior and conclusions for treatment processes N2 - Antimony (Sb) is used in industrial products mainly as flame retardant in plastic material. Due to such additives in plastics, about a half of Sb ends up in municipal solid waste incineration at the end-of-life and consequently in relevant amounts in the generated bottom ash. In contact with water, the initial leachability is low, as antimonates form sparingly soluble compounds with Ca2+. Following the carbonation of the incineration bottom ash (IBA) during the proceeding ageing the pH in the leachates decreases. With decreasing concentration of Ca in the eluate the solution equilibrium changes and antimonates dissolve. In Germany it is intended to regulate Sb in IBA with the planned implementation of the so called Mantelverordnung (MantelVO, containing provisions on the utilisation of mineral waste) in the near future. The limit values set in the draft might be critical for IBA and therefore pose a risk for the utilisation of the mineral fraction of IBA in the well-established recycling routes. T2 - SUM 2020 – 5th Symposium on Urban Mining and Circular Economy CY - Online meeting DA - 18.11.2020 KW - Bottom ash KW - Leaching KW - Antimony PY - 2020 SP - 1 EP - 4 AN - OPUS4-51622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Steffens, D. T1 - P-Verfügbarkeit von Recyclingprodukten N2 - Die Pflanzenversuche der vorliegenden Arbeit zeigen sehr gut, dass das Pyrolyse Produkt der Firma Pyreg zwar in der kurzfristigen P-Verfügbarkeit nur mäßig abschnitt, dafür aber eine gute P-Nachlieferung aufweist. Dies kann maßgeblich auf die im Produkt vorliegenden P-Verbindungen zurückgeführt werden.Es zeigt sich weiterhin, dass durch eine Na2CO3-Gabe die kurzfristige Verfügbarkeit von eisengefällten Klärschlämmen verbessert werden kann, es aber keinen Einfluss auf die langfristige P-Nachlieferung hat. Das BAM-Verfahren mit Na2SO4 liefert ein Produkt, welches sowohl eine gute kurzfristige P-Verfügbarkeit, als auch eine gute langfristige P-Nachlieferung hat. Dies kann auf die dabei entstehende P-Form, CaNaPO4, zurückgeführt werden. Ferner zeigen die Experimente, dass auch schwerlösliche Phosphate mit N2-fixierendem Rotklee mobilisiert werden können. T2 - 128. VDLUFA-Kongress CY - Rostock, Germany DA - 13.09.2016 KW - Phosphor KW - Recycling KW - Düngemittel PY - 2016 SN - 978-3-941273-23-8 SP - 57 EP - 73 PB - VDLUFA-Verlag CY - Darmstadt AN - OPUS4-38906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronen, A. A1 - Vogel, Christian A1 - Leube, Peter A1 - Ben Efraim, R. A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S. T1 - DEFEAT-PFAS: Detection, Quantification, and Treatment of Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater N2 - The research project focuses on tackling the detection, measurement, and elimination of per- and polyfluoroalkyl substances (PFAS) from polluted groundwater, with a particular emphasis on addressing short (C4-C7) and ultrashort (C1-C3) chain PFAS. Given the widespread use of PFAS in various products, they are commonly found in groundwater near industrial and military sites in Germany and Israel. Moreover, recent regulations limiting the use of long chain PFAS have led industries to shift towards shorter chain alternatives. Hence, our efforts are geared towards refining detection, quantification, and removal methods for short and ultrashort chain PFAS. In terms of detection, ww are developing passive sampling devices capable of collecting and tracking the temporal distribution of PFAS species in groundwater. This will enable us to analyze contaminations in German and Israeli groundwater using cutting-edge analytical techniques. Additionally, contaminated groundwater will undergo a two-stage treatment process aimed at concentrating the relatively low PFAS concentrations using innovative membrane technologies such as closed-circuit reverse osmosis and mixed matrix composite nanofiltration membrane adsorbers. Subsequently, the streams containing higher PFAS concentrations will be treated through coagulation, with the remaining PFAS being adsorbed onto carbonaceous nanomaterials. The outcome of this research will include the creation of advanced tools for detecting, measuring, and eliminating PFAS from polluted groundwater, while also enhancing our understanding of the scope of these contaminations. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://indico.scc.kit.edu/event/4029/attachments/7552/12045/Proceedings_Ger-Isr-Coop_Status-Seminar-2024.pdf SP - 33 EP - 36 AN - OPUS4-60331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karabeliov, Krassimire A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Großmaßstäbliche zyklische Versuche zum Zugtragverhalten von gerammten Stahlrohrpfählen N2 - Gerammte Stahlrohrpfähle sind das wesentlichste Gründungselement für Offshore-Konstruktionen. Typischerweise kommen diese als Monopiles oder als Mehrpfahlgründungen für Jacket-Konstruktionen zum Einsatz. Für die verhältnismäßig leichten Windenergieanlagen auf See wird bei Mehrpfahlgründungen regelmäßig die Zugtragfähigkeit maßgebend in der Bemessung. Zusätzlich sind Effekte aus wiederholten zyklischen Belastungen zu beachten, die sich auch auf die Zugtragfähigkeit auswirken können. Auch hier ergibt sich eine Besonderheit dadurch, dass im extremwertverteilten Lastspektrum wenige große (Wechsel-)Last-Amplituden entscheidend sind. Die gründungstechnischen Herausforderungen bei der Planung solcher Windparks auf See wurden von einer Reihe von Untersuchungen begleitet. Eine Versuchsserie zur Zugtragfähigkeit von großmaßstäblichen Pfählen wurde auf dem Testgelände der BAM nahe Horstwalde bei Berlin durchgeführt. Hierfür wurde ein Testfeld mit 10 Pfählen angelegt. Die Pfähle wurden monoton auf Zug und zyklisch belastet. Vergleichend wurden dynamische Pfahlprobebelastungen durchgeführt. Zwei der Pfähle wurden mit Dehnungssensoren instrumentiert und es konnte die Pfahl-Boden-Interaktion abschnittsweise ermittelt werden. T2 - 32. Christian Veder Kolloquium CY - Technische Universität Graz, Graz, Austria DA - 20.04.2017 KW - Offshore Windenergieanlagen KW - Pfahlgründungen KW - Zugtragfähigkeit KW - Zyklisches Tragverhalten PY - 2017 SN - 978-3-900484-75-0 IS - 58 SP - 103 EP - 120 PB - Gruppe Geotechnik Graz AN - OPUS4-40201 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Baeßler, Matthias A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten A1 - Thiele, Marc ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Identification of failure pattern in cylindrical grouted connection for wind structures - a pilot study N2 - At present, Wind Turbine Generators (WTGs) operating in onshore and offshore wind farms are primary sources of renewable energy around the world. Cylindrical grouted sleeve connections are usually adopted in these WTG structures to connect the upper structure and foundation for ease of installation. These structures including grouted connections experience considerable adverse loading during their lifetimes. Settlements were reported inside similar connections used in energy structures especially oil and gas platforms, which were installed in last three decades. Thus, repair and rehabilitation of such connections in existing wind structures should also be planned ahead to keep them operating in the future. The nature of failure and crack generation in grouted connections are crucial prior to adopt a strengthening strategy. This pilot study is carried out to actualize the failure mechanism in the grouted connection, when subjected to axial loading. A novel reusable scaled cylindrical grouted connection with shear keys was designed and tested for its load bearing behaviour. The mechanical test was accompanied by classical measuring techniques (e.g. displacement transducer) as well as non-destructive measuring techniques (e.g. digital image correlation (DIC), acoustic emission analysis (AE)). The failure mechanism incorporating slippage of the shear keys and cracking of the grout was investigated. The capacity and applicability of such test mould were also discussed. The knowledge is expected to pave way towards repair of deteriorated grouted connections with similar geometry and failure pattern. T2 - 1st International Conference on Construction Materials for Sustainable Future (CoMS_2017) CY - Zadar, Croatia DA - 19.04.2017 KW - Grouted connections KW - Cracks KW - Failure KW - Strengthening strategy KW - Digital image correlation KW - Acoustic emission analysis PY - 2017 SN - 978-953-8168-04-8 SP - 544 EP - 551 AN - OPUS4-39914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Kratzig, Andreas A1 - Bettge, Dirk T1 - Synergistic effects of impurities in the condensate on the corrosion of CO2 transport pipeline N2 - For the reliability of transport pipelines the corrosion resistance of the materials used needs to be determined in conditions, which are possible during the transport process. In some situations condensation of components out of the CO2 stream can occur. To study the effect of condensate on transport pipeline steel, a “worst-case scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppmv NO2, and 220 ppmv SO2, was proposed, fed (1.5 L/min) into a glass reactor containing coupon-shaped specimens for 120 600 h at 278 K (to simulate the underground pipeline transport), and resulted in the condensate containing 0.114 M H2SO4 and 0.0184 M HNO3 (pH 2.13). Basing on this “original” condensate, exposure tests and electrochemical characterization together with pH and conductivity in CO2 saturated condition at the same temperature were carried out. The role of each gas impurity and the combination of them, when the condensate is formed, was studied by investigating the role of individual and varying combination of acidic components in the condensate on the corrosion behaviors of the commercial pipeline-steel (L360NB). It can be concluded that although the condensation of NOx in form of HNO3 causes faster corrosion rate, it is the condensation of SOx or the combination of SOx and NOx that may cause much more severe problems in form of localized and pitting corrosions. Different to the corrosion products formed in CO2 atmosphere without impurities (mainly iron carbonate) the corrosion products resulted from these acidic condensation have no protectability, indicating the need of controlling gas quality during the transportation within the pipeline network. T2 - EUROCORR 2017 - PRAG CY - Prague, Czech Republic DA - 03.09.2017 KW - CCUS KW - CO2 corrosion KW - Carbon steels KW - Condensate PY - 2017 SP - Paper 75636,.1 EP - 4 AN - OPUS4-41874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Hille, Falk A1 - Said, Samir ED - Baeßler, Matthias ED - Rogge, Andreas ED - Möller, Gerd ED - Schiefelbein, Norbert T1 - Bauwerksüberwachung von Brücken im Kontext saisonaler Einflüsse N2 - Anhand verschiedener Bespiele wird diskutiert, wie Temperaturbeanspruchungen in einer Bauwerksüberwachung sichtbar werden und wie sie zu bewerten sind. Insbesondere der Einfluss auf die Zustandsbewertung im Sinne der Standsicherheit stellt häufig eine große Schwierigkeit dar. Behelfsweise besteht eine grundlegende Möglichkeit darin, ein Tragwerk immer zu seiner schwächsten Phase, d.h. in der Regel im Sommer zu beurteilen. Wie aufgezeigt, können zudem statistische Verfahren geeignet sein, Tragfähigkeitsänderungen zu detektieren. Als wesentliche Zukunftsaufgaben werden verbesserte Detektionsalgorithmen und physikalisch begründete Modelle zum mechanischen Verhalten angesehen. Die Akzeptanz schwingungsbasierter Verfahren zur Detektion und Lokalisierung von Schäden in der praktischen Anwendung ist alleinig von der Fähigkeit abhängig, Einflüsse aus veränderlichen Umwelt- und Betriebsbedingungen, insbesondere aber die aus der Temperatur zu eliminieren. Da die in den letzten Jahren immer wichtiger werdenden stochastischen Verfahren zur Schadensde-tektion und -lokalisierung die (statistische) Charakteristik der Messdaten bereits implizit nutzen, sind hier Entwicklung, Anpassung und Anwendung statistischer Algorithmen zur Eliminierung der variierenden Umwelteinflüsse naheliegend. Auf der anderen Seite wird der saisonale Einfluss auf Bauwerksmessungen in sehr vielen Veröf-fentlichungen dargestellt und es werden häufig verdachtsweise begründete physikalische Zu-sammenhänge für das Verhalten aufgezeigt. Im Regelfall sind die Aussagen aber nicht experi-mentell überprüft und von eher allgemeiner Natur („Asphalt reagiert temperaturabhängig“). Ob-jektspezifische Zusammenhänge, beispielsweise über Versuch an Repräsentanten in der Klima-kammer ermittelt, könnten jedoch sehr hilfreich sein. T2 - Messen Im Bauwesen CY - BAM, Berlin, Germany DA - 08.11.2016 KW - Bauwerksüberwachung KW - SHM KW - Temperatureinfluss PY - 2016 SN - 978-3-9817853-6-4 VL - 2016 SP - 89 EP - 102 PB - Eigenverlag BAM AN - OPUS4-39354 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobetzki, Joana A1 - Le Manchet, S. A1 - Bäßler, Ralph T1 - Corrosion Resistance of the Super-Austenitic Stainless Steel UNS S31266 for Geothermal Applications N2 - Super-austenitic stainless steels cover grades with high chromium (20 to 27 %), high nickel (18 to 31 %) and high molybdenum (4 to 6 %) contents. Within this family, the 6%Mo high nitrogen grade S31266 was developed to combine the beneficial influence of chromium, tungsten, molybdenum and nitrogen on its mechanical and corrosion properties. Due to 22 % nickel, 24 % chromium and 0.4 % nitrogen additions, this alloy exhibits a very stable microstructure, being less prone to intermetallic phase precipitation than the other highly alloyed super-austenitic stainless steels. This paper deals with the corrosion resistance of S31266 in artificial geothermal water with moderate salinity and low pH. Long-term static exposures and electrochemical tests were conducted at various temperatures to evaluate the pitting, crevice and stress corrosion cracking resistance of this material. The results show that S31266 is resistant up to 220 °C. As a consequence, it can be a good candidate material for geothermal applications involving a highly corrosive environment, especially salinity and low pH. T2 - NACE International Corrosion Conference 2107 CY - New Orleans LA, USA DA - 26.03.2017 KW - Geothermal energy KW - S31266 KW - Crevice corrosion KW - Super-austenitic stainless steel PY - 2017 SP - Paper 8825, 1 EP - 11 PB - NACE CY - Houston TX, USA AN - OPUS4-39830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Evaluation of the Resistance of Metallic Materials under the Influence of Biofuels N2 - Changes in fuel composition and the introduction of alternative fuels often create problems of corrosion and degradation in materials. The objective of this research was to determine the corrosion behaviour of commercial metallic tank materials (unalloyed steels, austenitic CrNi- and CrNiMo-steels, aluminium and its alloys) in fuels and heating oil with admixtures of biogenic sources, such as gasoline with addition of ethanol (E10, E85), pure biodiesel and heating oil with 10 % biodiesel (B10). Metallic tank materials were evaluated as resistant in a liquid if the annual corrosion rate due to uniform corrosion did not exceed 0.1 mm/year, and localized corrosion effects in the form of pitting corrosion, stress corrosion cracking and crevice corrosion did not occur. The corrosion rates of the tank materials after exposure to E10, E85, non-aged and two-year aged pure biodiesel, and non-aged and one-year aged heating oil B10 for four weeks at 50 °C, according to DIN 50905/4, were well below the limit of 0.1 mm/year. For the unalloyed steels, the formation of rust was observed independently of the biofuels amount of ageing. U-bend specimens made of unalloyed steel were not damaged in form of stress corrosion cracking in all test fuels at this test temperature. T2 - CORROSION 2017 CY - New Orleans, LA, USA DA - 26.03.2017 KW - Biodiesel KW - Bioethanol KW - Tank materials KW - Corrosion resistance KW - Stress corrosion cracking PY - 2017 SP - Paper No 8854, 1 EP - 12 PB - NACE International Publications Division CY - Houston, Texas, USA AN - OPUS4-39638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zorn, Sebastian A1 - Unger, Jörg F. A1 - Schneider, Ronald ED - Silva Gomes, J. F. ED - Meguid, S. A. T1 - A probabilistic method for identification of vehicle loads and system parameters for reinforced concrete bridges N2 - Growth of vehicle traffic density can be observed in many countries all over the world. This accretion is caused by world-wide population growth on the one hand, but also by increasing freight volumes and, thus, freight transports on the streets on the other hand. This increased exposure becomes more and more of a problem for the civil infrastructure such as bridges. Many of these bridges are nowadays stressed to their limits by higher loads than they were originally designed for and/or operating times beyond the initially predicted life span. This raises questions about structural safety and lifetime prediction, of course, and therefore illustrates the need for accurate structural monitoring. Since the lifetime of bridge structures is primarily influenced by their traffic loading, an accurate identification of load configurations over the whole length of a structure is most desirable. In this paper, a method for vehicle load identification is proposed. It involves Bayesian Analysis and (quasi-)static importance functions in order to estimate vehicle positions, velocities and weights. The structure is modeled with finite elements in order to generate model predictions for different load configurations. The model predictions are compared to the actual measured data to identify the most probable loading configuration for that measurement. This involves the use of enhanced Monte Carlo simulations such as MCMC to reduce the computational effort. The measured data from different kinds of sensors can (and should) be combined for accuracy gain – in this case a combination of measured displacements and inclinations. Since the measurements take place over some time during the passage of the vehicle, these estimations are carried out for several time instants for which the estimation is carried out. The advantage of using Bayesian Updating Method is the embodied learning effect leading to an improvement of the estimation when adding new information in a new calculation step. Using the estimates for the loading conditions of a bridge structure as well as measurements of the structural responses, Bayesian analysis is again used in order to estimate localized structural parameters such as Young's modulus or Moments of Inertia in form of probability density functions yielding most probable values for the parameters. Considering the difficulties for load identification close to the support poles of the bridge and therefore for the proposed structural parameter identification procedure, it is clear that this problem is ill posed. Bayesian regularization methods also have proven to be very effective when handling ill posed problems. T2 - IRF2016 - Integrity Reliability Failure CY - Porto, Portugal DA - 24.07.2016 KW - Vehicle load identification KW - Structural health monitoring KW - Bayesian updating method PY - 2016 SN - 978-989-98832-4-6 VL - 2016 SP - PAPER REF: 6294-575 EP - 576 PB - INEGI-Instituto de Ciencia e Inovacao em Engenharia Mecanica e Gestao Industrial CY - Porto - Portugal AN - OPUS4-39833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - On contact problem application for the local behavior of soil-pile interaction N2 - In this paper a shear test, which helps to study local behavior of the soil-pile interaction, is modelled numerically with the Finite Element Method as a 2D plane strain problem. A normal pressure on top and shear displacement on side were applied. So far, the material behavior was considered elastic for the sake of simplicity. The effect of thickness on contact elements and the presence of in plane stress has been highlighted. The purpose of the paper is to find a suitable contact element which represents more close to reality a soil-pile interaction problem under cyclic axial loading. Moreover, an insight on the presence of in-plane stress shows that it needs to be considered cautiously. T2 - ICCE2017 CY - Tirana, Albania DA - 12.10.2017 KW - Contact problem KW - Numerical modelling PY - 2017 SP - 167 EP - 174 PB - Polytechnic University of Tirana CY - Tirana, Albania AN - OPUS4-42962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dutto, Paola A1 - Baeßler, Matthias A1 - Geißler, Peter T1 - Suction buckets behaviour under tensile loads: A numerical study with FEM N2 - Suction Bucket Jackets (SBJ) are found as a suitable alternative to driven piles for the support of foundations for offshore wind energy converters. In the case of jackets or multipods, a predominant vertical load is to be expected. The effect of such a tensile loading is the generation of suction in the soil inside the bucket which leads to an increment of tensile capacity. This paper aims to study the bearing behaviour of a suction foundation by taking into account how the soil permeability and the loading rate influence the foundation behaviour. Moreover, after submitting the structure to a storm load, the bearing capacity is studied again, in order to see the effect of such a load on the bucket's bearing behaviour. This study is carried out by means of Finite Element numerical simulations based on the formulation of Biot's equations combined with a constitutive model that reproduces the key aspects of cyclic soil behaviour in the frame of Generalized Plasticity. T2 - International Ocean and Polar Engineering Conference CY - San Francisco, USA DA - 25/06/2017 KW - Finite element method KW - Offshore wind energy converter KW - Suction bucket KW - Generalized plasticity KW - Sand KW - Numerical simulation KW - Tensile capacity PY - 2017 SN - 978-1-880653-97-5 SP - 485 AN - OPUS4-41051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - This work examined the droplet corrosion of CO2 pipeline steels caused by impurities in CO2 supercritical/dense phase at 278 K, simulating the underground transport condition. The wetting properties of carbon steels (X52 and X70) as well as martensitic steel UNS S41500, and superaustenite UNS N08031 were studied by contact angle measurement, revealing reactive wetting behavior of carbon steels. Exposure tests with CO2 saturated water droplet on steel surface showed that the impurities (220 ppmv SO2 and 6700 ppmv O2) diffused into the droplet and then reacted with metal coupons in supercritical/dense phase condition, forming the corrosion product instantly during pumping process. Due to the active wetting behavior, the carbon steels suffered from heavily attack, while negligible corrosion product was observed in cases of martensitic steel UNS S41500 and superaustenite UNS 08031 coupons. Condensation experiments that were carried out on fresh polished coupons in CO2 with 1200 ppmv H2O showed that the formation and aggregation of droplet is dependent on the presence of impurities. Without SO2 and O2, the same concentration of H2O did not cause observable corrosion process after a week of exposure. With 220 ppmv SO2 and 6700 ppmv O2 even low water concentration (5-30 ppmv) still resulted in heterogeneous nucleation and subsequent growth of droplets, leading to corrosive process on carbon steel surface albeit to a lesser extent. T2 - CORROSION 2018 CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 SP - Paper 10845, 1 EP - 11 PB - NACE International Publications Division CY - Houston, Texas, USA AN - OPUS4-44798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ostermann, Markus A1 - Herzel, Hannes A1 - Adam, Christian A1 - Kühn, A. A1 - Wedell, R. A1 - Mory, D. T1 - Integrierte Systeme (RFA und LIBS) zur Düngemittelgewinnung und zum Management der Bodenfruchtbarkeit N2 - Aufgrund der natürlichen und vom Menschen verursachten Heterogenität von Böden erfordert der Erhalt und die Verbesserung ihrer Fruchtbarkeit durch landwirtschaftliche Bewirtschaftungsmaßnahmen sorgfältig geplante Ent-scheidungen, die auf einer detaillierten Erfassung der Bodeneigenschaften und einem vertieften Verständnis der Bodenprozesse beruhen. Es ist bekannt, dass die konventionelle, flächen-einheitliche Bewirtschaftung Ertragsver-luste durch zu geringe Bewirtschaftungsintensität (z. B. Düngung) auf einen Teil der Fläche verursacht, während andere Teile des Feldes zu hohe Dosen erhalten und es dadurch zu Verschwendung von Ressourcen und zu Um-weltbelastungen kommt. Trotz der Verfügbarkeit von Technologien für ortsspezifische Düngung ist die Akzeptanz ortsspezifischer Bewirtschaftung (Precision Agriculture) in der Praxis noch gering. Ein wesentlicher Grund dafür ist das Fehlen von kostengünstigen Methoden zur Erfassung der bewirtschaftungsrelevanten Bodenmerkmale. So-wohl für die elementanalytische Untersuchung von Böden als auch für die Untersuchung von Ausgangsmaterialien (z.B. Klärschlammaschen) für ihre Verwendung als Dünger ist eine zuverlässige Analytik und Prozessüberwachung erforderlich. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - LIBS KW - Online-RFA KW - Düngemittelgewinnung KW - Bodenfruchtbarkeit KW - BONARES PY - 2015 SP - 23 EP - 24 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Krüger, Oliver A1 - Herzel, Hannes ED - Lederer, J. ED - Laner, D. ED - Rechberger, H. ED - Fellner, J. T1 - Phosphorus flows in German sewage sludge ashes and potential recovery technologies N2 - Phosphorus (P) is essential for all forms of life and cannot be substituted. It is one of the macro nutrients applied in form of mineral or organic fertilizers in agricultural crop production. Mineral P fertilizers are generally based on phosphate rock, a limited resource. Western Europe completely depends on imports as it has no own relevant phosphate mines. The most abundant phosphate deposits are located only in a few countries such as Morocco, China, South Africa and the United States of America. Furthermore, phosphate rock and as a consequence mineral P fertilizers are often contaminated with the toxic elements cadmium and uranium. In Order to substitute phosphate rock P-bearing waste streams are investigated for their potential to be recyded as fertilizers. Wastewater is one of the important P-bearing waste streams that were in the focus of research in the last 10 years. German wastewater is e.g. a carrier of approx. 70,000 t of phosphorus per year. T2 - International workshop on technospheric mining - Mining the technosphere - drivers and barriers, challenges and opportunities CY - Vienna, Austria DA - 01.10.2015 KW - Phosphorus recovery KW - Sewage sludge ash PY - 2015 SN - 978-3-85234-132-3 SP - 77 EP - 80 AN - OPUS4-34542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes A1 - Krüger, Oliver ED - Schuhmann, R. T1 - Technische Prozesse zur Phosphorrückgewinnung aus Klärschlammaschen N2 - Klärschlammaschen weisen hohe Gehalte an Phosphor auf, dieser ist allerdings schlecht für Pflanzen verfügbar. Des Weiteren enthalten sie Schwermetalle die vor dem Einsatz als Düngemittel entfernt werden müssen. Vor diesem Hintergrund wurden in den letzten Jahren nasschemische und thermochemische Verfahren entwickelt und zum Teil bereits in Demonstrationsanlagen getestet. Ein thermochemischer Verfahrensansatz wird in diesem Beitrag näher vorgestellt. Klärschlammaschen werden mit Klärschlamm als Reduktionsmittel und Natriumsulfat als Aufschlussmittel im Drehrohrofen thermisch behandelt. Bei diesem Prozess wird pflanzenverfügbares NaCaPÜ4 gebildet, unerwünschte Elemente wie As, Cd, Hg und Pb werden zum Teil über die Gasphase separiert. Die Ergebnisse eines Demonstrationsversuchs werden vorgestellt. N2 - Sewage sludge ashes exhibit high phosphorus mass fractions. However, the availability of phosphorus to plants is poor. Furthermore, sewage sludge ashes contain eco-toxicologically relevant heavy metals that have to be removed prior to agricultural application. ln front of this background several wet-chemical and thermo-chemical processes were developed in the last years and some of them were already successfully demonstrated in large scale. A thermo-chemical approach is presented in this article. Sewage sludge ashes are mixed with dry sewage sludge as reductant and sodium sulfate. Düring thermal treatment in a rotary kiln at approx. 950°C plant available NaCaPCU is formed. Furthermore undesired elements such as As, Cd, Hg and Pb are separated via the gas phase. Results of demonstration trials are presented. T2 - 8. CMM-Tagung 2015 - Innovative Feuchtemessung in Forschung und Praxis - Material - Prozesse - Systeme CY - Karlsruhe, Germany DA - 07.10.2015 KW - Klärschlammasche KW - Phoshorrückgewinnung PY - 2015 N1 - Serientitel: Innovative Feuchtemessung in Forschung und Praxis – Series title: Innovative Feuchtemessung in Forschung und Praxis SP - 251 EP - 262 AN - OPUS4-34859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher, Stefan A1 - Weise, Matthias T1 - Auf dem Weg zu Industrie 4.0: Bestimmung von Messunsicherheitsbudgets in der Oberflächentechnik N2 - Vorgestellt wurde die Bestimmung von Messunsicherheitsbudgets für sehr unterschiedliche physikalische Größen, die in der Oberflächentechnik von hoher Relevanz sind: Stufenhöhe h, Schichtdicke d, Eindringhärte HIT und Haftfestigkeit. Die Unterschiede betreffen die Art der Prüfmethodik (optisch zerstörungsfrei vs. mechanisch invasiv/zerstörend), die laterale Größe des Integrationsgebietes der Messung (lokal: nano bis sub-mikro vs. global: mikro bis makro) und die Art der Bestimmung von Messunsicherheitsbudgets (physikalische Größen: direkt rückführbar; Werkstoffkenngröße: genormt; Systemkenngröße: genormt). Im Rahmen von Industrie 4.0 werden ausgehend der geforderten Spezifikation des beschichteten Produkts (Mittelwert mit Vertrauensbereich oder Mindestwert) durchgehende Toleranzbänder zur Oberflächenmodifizierung/Beschichtung des Substrats, einhergehend mit Prozessfenstern, die diese Toleranzbänder garantieren, erforderlich, die zuverlässig erfasst werden müssen. Die Frage der anzuwendenden Mess- und Prüftechnik und die damit notwendige Betrachtung von Messunsicherheitsbudgets ist für die Digitalisierung von Konditionierungs-, Zustands-, Regel- und Steuergrößen unverzichtbar. Mit Blick auf die Einhaltung von Prozessfenstern und die dafür notwendige Prozessführung wird technologisches Kern-Know-how digitalisiert, das es unbedingt zu schützen gilt. Nur lokale Netze können diese Sicherheit garantieren, in globalen Netzen ist die Datensicherheit bestenfalls maximierbar T2 - 14. ThGOT Thementage Grenz- und Oberflächentechnik und 6. Kolloquium Dünne Schichten in der Optik CY - Zeulenroda, Germany DA - 12.03.2019 KW - Oberflächentechnik KW - Messunsicherheit KW - Messtechnik KW - Prüftechnik KW - Haftfestigkeit PY - 2019 SN - 978-3-00-058187-8 VL - 2019 SP - 1 EP - 10 AN - OPUS4-47670 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hönig, D. A1 - Schneider, S. A1 - Domnick, R. A1 - Belzner, M. A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Stephanowitz, Ralph A1 - Weise, Matthias T1 - Optical layer systems for product authentication: interference, scattering, light diffusion and ellipsometric encoding as public, hidden and forensic security features N2 - Embedding of information on surfaces is state of the art for identification testing in which public, hidden and forensic features are used. In many instances, the legal authentication of a product, a material or a document is required. Among the surface-based encoded labels, bar codes and data matrices are most frequently applied. They are publicly visible. The material itself is irrelevant, only a sufficient optical contrast is required. However, a strong material dependence of the label can be achieved by means of Fabry-Perot layer stacks. Stack designs are described with regard to all three security levels: public features (e.g. color and tilt effect) perceptible by the human eye, hidden features (e.g. optical response in a given spectral range) detectable by commonly available instruments and forensic features (ellipsometric quantities Ψ and Δ as a function of wavelength λ and angle of incidence AOI) only detectable by sophisticated instruments. Regarding material-correlated authentication, ellipsometric quantities Ψ and Δ are used as encoded forensic features for the first time. Hence, Fabry-Perot layer stacks as information carriers in combination with imaging ellipsometry as optical read-out system provide all-in-one anti-counterfeiting capabilities. T2 - PSE 2012 - 13th International conference on plasma surface engineering CY - Garmisch-Partenkirchen, Germany DA - 10.09.2012 KW - Fabry-Perot layers KW - Ellipsometry KW - Anti-counterfeiting PY - 2012 UR - http://www.pse-conferences.net/tl_files/pse2012/abstractupload/PSE2012-PO1001-ext.pdf SP - 1 EP - 4 AN - OPUS4-27304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Study of Polyaniline/Silicon Dioxide based Coating on Carbon Steel in Artificial Geothermal Brine N2 - Geothermal brines are corrosive in nature because of their salt contents and high temperatures. Therefore, they pose a major challenge to geothermal power-plants, which are mostly built of low alloyed steels, e.g., carbon steel. Carbon steel is susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic-saline properties. To overcome this limitation, geothermal power plants should be built by either high alloyed materials or by integrating protection systems on carbon steel, such as coatings and inhibitors. We studied a coating system containing polyaniline/silicon dioxide basing on locally available resources that provides protection against corrosion of carbon steel and enhance the thermal resistance in geothermal environments. Here, exposure and electrochemical tests of coated carbon steels were performed in an artificial geothermal brine. The solution had a pH of 4, with the composition of 1,500 mg/L of chlorides, which is based on the chemical analysis of geothermal brine found in Sibayak, Indonesia. All exposure tests were conducted using autoclaves at 150 °C with a total pressure of 1 MPa, which was performed for up to six months to evaluate the durability of the coating system. Post-experimental analyses were performed by assessing the surface of specimens using optical and electron microscopes. On the other hand, electrochemical tests were performed for seven days at 25 °C and 150 °C to investigate the kinetics of electrochemical reactions by measuring open circuit potential and electrochemical impedance spectra. Experimental results showed the corrosion resistance of PANI/SiO2 composite coatings, where polyaniline and SiO2 play their roles as stabilizers. T2 - World Geothermal Congress CY - Online meeting DA - 30.03.2021 KW - Coatings KW - Corrosion KW - Polyaniline KW - Sibayak KW - SiO2 PY - 2021 SP - 1 EP - 7 AN - OPUS4-52830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence of Precipitating Brine Components on Materials Selection for Geothermal Applications N2 - Since geothermal wells are a feasible energy source to replace fossil fuel supply, many technologies have been developed to take advantage of geothermal energy. Nevertheless, service conditions in geothermal facilities are in many cases extreme in terms of corrosion due to the chemical composition of hydrothermal fluids and temperatures. Therefore, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of the facilities. During operation of a geothermal research facility in Groß Schönebeck copper and lead effects have been found downhole. Occurring mechanisms and measures to prevent precipitation or scaling needed to be investigated as well as potential influences of such precipitates on corrosion resistance of metallic materials used for equipment. This contribution deals with the evaluation of the corrosion behavior of carbon steel and corrosion resistant alloys in copper and/or lead containing artificial geothermal water, simulating the conditions in the Northern German Basin. The behavior of these materials in an artificial geothermal water obtained by electrochemical measurements and exposure tests are presented. While carbon steel exhibits precipitation and deposition, higher alloyed material shows different response to such species and a higher resistance in saline geothermal water. Basing on these results the suitability of the investigated corrosion resistant alloy is given for use in such conditions, whereas carbon steel creates difficulties due to its susceptibility to Cu- and Pb-precipitation. T2 - World Geothermal Congress CY - Online meeting DA - 30.03.2021 KW - Copper KW - Lead KW - Corrosion KW - Steel KW - Geothermal energy PY - 2021 SP - 1 EP - 11 AN - OPUS4-52828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Hille, Falk A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst ED - Papadrakakis, M. ED - Fragiadakis, M. T1 - Monitoring of a prestressed bridge model byultrasonic measurement and vibration recordings N2 - The aim of this work is to improve the current structural health monitoring (SHM) methods for civil structures. A field experiment was carried out on a two-span bridge with a built-in un-bonded prestressing system. The bridge is a 24-metre long concrete beam resting on three bear-ings. Cracks were formed subsequently when a prestressing force of 350 kN was changed to 200 kN, so that different structural states could be demonstrated. The structural assessment of this reference bridge was accomplished by the non-destructive testing using ultrasonic devices and vibration measurements. The ultrasonic velocity variations were investigated by using the coda wave interferometry method. The seismic interferometry technique was applied to the vi-bration recordings to reconstruct the wave propagation field in the bridge. This investigation shows that the wave velocity is sensitive to the current structural state and can be considered as the damage indicator. Overall, the implementation of coda cave interferometry and seismic interferometry technique facilitates structural health monitoring (SHM) in civil engineering. T2 - COMPDYN 2021 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering CY - Online meeting DA - 28.06.2021 KW - Structural health monitoring KW - Non-destructive testing KW - Coda wave interferometry KW - Seismic interferometry KW - Ultrasonic measurement KW - Prestress PY - 2021 SP - 1 EP - 9 PB - European Community on Computational Methods in Applied Sciences (ECCOMAS) AN - OPUS4-52957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph T1 - ISO 27913 - Example For Successful Standardization Activities In The Field Of CCUS N2 - Since 2016 ISO Technical Committee (TC) 265 is working on standardization the whole CCS-process chain. Around 30 countries are working together to provide international guidelines. As ISO 27913 was the first standard finished within these activities it is already in the stage of first revision. The objective of ISO 27913 is “to provide specific requirements and recommendations on certain aspects of safe and reliable design, construction and operation of pipelines intended for the large-scale transportation of CO2 that are not already covered in existing pipeline standards such as ISO 13623, ASME B31.8, EN 1594, AS 2885 or other standards. Existing pipeline standards cover many of the issues related to the design and construction of CO2 pipelines; however, there are some CO2 specific issues that are not adequately covered in these standards. The purpose of this document is to cover these issues consistently. Hence, this document is not a standalone standard, but is written to be a supplement to other existing pipeline standards for natural gas or liquids for both onshore and offshore pipelines.” This contribution shall provide information on the content, the current stage of the revision process, encourage to contribute to this standard and make listeners aware to consider the influence of ISO standard on documents currently in draft. T2 - AMPP's Annual Conference + Expo 2024 CY - New Orleans, LA, USA DA - 02.03.2024 KW - Corrosion resistant materials KW - Carbon dioxide KW - Corrosion prevention KW - Standardization KW - CCUS KW - CCS KW - CCU PY - 2024 SP - 1 EP - 6 PB - AMPP CY - Houston AN - OPUS4-59735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha,, Md A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Thiele, Marc T1 - Remediation of Cracks Formed in Grouted Connections of Offshore Energy Structures under Static Loads N2 - The future energy demand necessitates the exploration of all potential energy sources both onshore and offshore. Global trend has shifted towards offshore energy, which can be obtained from either carbon intensive or renewable options, hence requiring structures such as rigs, platforms, and monopiles. Most of these structures adopt easily installable construction techniques, where lower foundation need to be connected with the super structure by mean of grouted composite joints. Generally, these composite connections have exterior sleeve, interior pile and infill grout. Being located in remote offshore conditions, connections can experience considerable adverse loading during their lifetimes. Degradations were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites may often be proven difficult, which eventually leads to reduced capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs in the future. This study aims at characterizing the nature of crack generation in grouted connections and thereby identifying the potential of repair using suitable repair material. Scaled grouted joints were manufactured using a novel mold, and connections were loaded under static load to visualize the main failure pattern. The failure mechanism and loading capacity are found compatible to previous results from earlier literature. Grouted connection was then repaired using cementitious injectable grout. The effectiveness of the repair system is also discussed. T2 - Twenty-eighth (2018) International Ocean and Polar Engineering Conference CY - Sapporo, Japan DA - 10.06.2018 KW - Offshore KW - Energy KW - Grouted Connection KW - Cracks KW - Repair KW - Rehabilitation PY - 2018 SP - 120 EP - 126 AN - OPUS4-45227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Stutz, H. H. A1 - Cuellar, Pablo A1 - Baeßler, Matthias A1 - Rackwitz, F. ED - Cardoso, A. S. ED - Borges, J. L. ED - Costa, P. A. ED - Gomes, A. T. ED - Marques, J. C. ED - Vieira, C. S. T1 - A generalized plasticity model adapted for shearing interface problems N2 - The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through inter-face elements and adequate constitutive models. In this work, a constitutive model in the framework of Gen-eralized Plasticity for sandy soils has been chosen to be adapted for the interface zone. From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data. T2 - Conference CY - Porto, Portugal DA - 25.06.2018 KW - Numerical modelling KW - Soil-pile interaction KW - Interface KW - Shearing PY - 2018 SN - 978-1-138-33198-3 VL - 1 SP - 97 EP - 102 PB - NUMGE CY - Porto, Portugal AN - OPUS4-45721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Components in CO2 Streams with Transport Pipeline Steel X70 at High Pressure and Low Temperature N2 - Specific amounts of oxidizing and reductive impurities as well as some moisture were added to dense phase CO2 to replicate CO2 streams from sources in a CCS pipeline network. Due to the moisture content being only 50 ppmV no visible acid condensation took place. To simulate stress conditions at the inside pipeline surface due to fluid pressure (10 MPa) specimens were preloaded using a load frame. Experiments conducted at 278 K and at 313 K revealed the highest corrosion rate at lower temperature. Corrosive effect of impurities was strongest applying mixed atmosphere, containing oxidizing and reductive components, closely followed by CO2 streams with pure oxidizing character. By far, the lowest corrosion rate (10x lower) resulted from reductive atmosphere. In general, at constant temperature and pressure the CO2 stream composition strongly influences the morphology, thickness and composition of the corrosion products. Applying oxidizing or mixed impurities, iron hydroxides or oxides (e.g. goethite, hematite) occur as dominating corrosion products, capable to incorporate different amounts of sulfur. In contrast, using reductive atmosphere very thin corrosion layers with low crystallinity were developed, and phase identification by XRD was unfeasible. SEM/EDX analysis revealed the formation of Fe-O compounds, most likely attributed to the oxygen partial pressure in the system induced by CO2 (≥0.985 volume fraction) and volatile H2O. In addition to the surface covering corrosion layer, secondary phases had grown locally distributed on top of the layer. These compounds are characteristic for the applied atmosphere and vary in number, shape and chemical composition. T2 - 14th Greenhouse Gas Control Technologies Conference (GHGT-14) CY - Melbourne, Australia DA - 21.10.2018 KW - CCS KW - CO2 Corrosion KW - Pipelines PY - 2019 UR - https://ssrn.com/abstract=3365756 VL - 2019 SP - 1 EP - 15 AN - OPUS4-49711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Georg A1 - Hering, Marcus A1 - Schubert, T. A1 - Bracklow, F. A1 - Nerger, Deborah A1 - Hille, Falk A1 - Beckmann, B. ED - Wuttke, F. ED - Aji, H. ED - Özarmut, A. T1 - Schädigung von Stahlbetonplatten infolge eines harten Anpralls - Vergleich von halb-empirischen Methoden und experimentellen Ergebnissen N2 - Schutzbauwerke von systemkritischen Infrastruktureinrichtungen wie Betonwände und Betonbarrieren müssen Anprallereignissen oder schweren Unfällen in einem vertretbaren Maße widerstehen können. Anprallereignisse können verschiedenster Natur sein. Hierzu zählen Steinschlag, Fahrzeug- oder Flugzeuganprall oder auch Geschosseinschlag. Geschosseinschläge bzw. Bei den Anprall- oder Impaktereignissen wird zwischen hartem und weichem Anprall unterschieden, bei hartem Anprall verformt sich der Anprallkörper nicht oder nur geringfügig, bei weichem Anprall stark. In diesem Artikel werden Forschungsergebnisse zum harten Anprall auf bewehrte Stahlbetonplatten vorgestellt, welche über die letzten Jahre im Rahmen eines Kooperationsprojekts zwischen dem Institut für Massivbau (IMB) der Technischen Universität Dresden (TUD) und der Bundesanstalt für Materialforschung und -prüfung (BAM) durchgeführt wurden. Auf dem Gelände des Otto-Mohr-Labors (OML) der TUD steht hierfür ein speziell konzipierter Fallturm zur Verfügung. Der Aufbau im Fallturm lässt aktuell druckluftbeschleunigte Impaktversuche mit mittleren Anprallgeschwindigkeiten zu. Die durch Anprall geschädigten Stahlbetonplatten wurden anschließend bei der BAM mit Strahlung tomographisch untersucht. Diese Untersuchungen ermöglichen einen Blick auf die Schädigung und Rissstruktur im Inneren der Stahlbetonplatten. Ein Schwerpunkt der durchgeführten Untersuchung ist der Vergleich von Testergebnissen mit den häufig angewendeten halbempirischen Berechnungsmethoden zu den erforderlichen Wandstärken und den sich daraus ergebenden zulässigen Anprallgeschwindigkeiten. Bei diesem Vorgehen wird auch die mit analytischen Methoden abschätzbare Durchdringungsgeschwindigkeit bzw. Austrittgeschwindigkeit eines Projektils ermittelt und mit den realen Testergebnissen verglichen. Außerdem wird der Einfluss von sowohl externen als auch internen Strukturparametern auf Risse betrachtet und ein Fazit abgeleitet. Weiterhin werden laufende und zukünftige wissenschaftliche Untersuchungen zum Anprall auf Betonstrukturen am IMB und der BAM genannt. T2 - 18. D-A-CH-Tagung CY - Kiel, Germany DA - 13.09.2023 KW - Impakt KW - Harter Anprall an Stahlbetonstrukturen KW - Fallturm PY - 2023 SN - 978-3-930108-15-1 SP - 471 EP - 479 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. AN - OPUS4-58341 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Integrated Coating System for Corrosion Protection of Carbon Steel in Artificial Geothermal Brine N2 - Corrosive geothermal brines are a major challenge to geothermal power-plants. For cost reasons, plant designers prefer to use carbon and low alloyed steels, which are susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic and saline properties. To solve such problem, coatings or inhibitors would be a protective solution as an alternative to the use of high alloyed materials. This study investigated a coating system consisting of polyaniline/silicon dioxide based on resources locally available in Indonesia. Protection against corrosion of carbon steel was shown by long-term (28 day) exposure and electrochemical tests of coated carbon steels, performed in an artificial acidic and saline geothermal brine, comparable to the conditions encountered at a site in Indonesia. Therefore, an integrated coating system is proposed for corrosion protection, combining the electrochemical functionality of polyaniline and the physical advantages of silica. T2 - AMPP International Corrosion Conference CY - Online meeting DA - 06.03.2022 KW - Geothermal KW - Corrosion KW - Coating KW - Polyaniline KW - Silicon dioxide PY - 2022 SP - 1 EP - 11 CY - Houston TX (USA) AN - OPUS4-54451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Gaddampally, Mohan Reddy A1 - Völzke, Holger T1 - Failure Analysis on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. The cladding is the first barrier for the spent fuel pellets. An established method for characterising the cladding material is the ring compression test (RCT), in which a small, cylindrical sample of the cladding tube is subjected to a compressive load. Radial hydrides may precipitate in zirconium-based alloys (Zircaloy) under pre-storage drying and during slow cooling, which result in embrittlement of the cladding material and eventually a possible sudden failure of cladding integrity under additional mechanical loads. The focus of the presented research is on the development of appropriate nu-merical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. A modelling approach based on cohesive zones is ex-plained which is able to reproduce the propagation of cracks initiated at radial hydrides in the zir-conium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hy-drides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. Based on the developed fracture mechanics approach, not only the deformation behaviour but also the fail-ure behaviour of irradiated as well as unirradiated Zircaloy claddings with radial hydrides under RCT loading conditions can be adequately described. T2 - 27th International Conference on Structural Mechanics in Reactor Technology - SMiRT 27 CY - Yokohama, Japan DA - 03.03.2024 KW - Cladding Embrittlement KW - Cohesive Zone Modelling KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 SP - 1 EP - 8 AN - OPUS4-60671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Buggisch, Enrico A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Electrochemical study on wellbore constellations for CO2 injection N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells the corrosion resistance of the materials used needs to be determined. In this study, representative low cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were embedded in cement to mimic the realistic casing-cement interface. Electrochemical studies were carried out using these metal-cement specimens in comparison with those made of metal only in CO2 saturated synthetic aquifer fluid, at 333 K, to reveal the effect of cement on the steel performance. The results showed the protective effect of cement on the performance of pipeline metals during polarisation process. However, the corrosion current density was high in all cases, with and without cement, indicating that the corrosion resistance of these materials is low. This conclusion was supported by the surface analysis of the polarized specimens, which revealed both homogenous and pitting corrosions. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Injection KW - Impurities PY - 2018 SP - 1 EP - 4 PB - EFC CY - Krakau, Poland AN - OPUS4-46291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Hille, Falk ED - Powers, N. ED - Frangopol, D. T1 - A study on diverse strategies for discriminating environmental from damage based variations in monitoring data N2 - Right from the beginning of applying SHM to bridge structures it was obvious that environmental based perturbations on the measurement significantly influence the ability to identify structural damage. Strategies are needed to classify such effects and consider them appropriately in SHM. Various methods have been developed and analyzed to separate environmental based effects from damage induced changes in the measures. Generally, two main approaches have emerged from research activity in this fields: (a) statistics based tools analyzing patterns in the data or in computed parameters and (b) methods, utilizing the structural model of the bridge taking into account environmental as well as damage based changes of stiffness values. With the back-ground of increasing affordability of sensing and computing technology, effort should be made to increase sensitivity, reliability and robustness of procedures, separating environmental from damage caused changes in SHM measures. The contribution describes both general strategies and points out their Advantages and drawbacks. As basis, a review on relevant methods was conducted. The aim of the study is to classify approaches for separating damage describing information from environmental based perturbations in dependency of the SHM objective. And such, it is intended to describe a best practice in designing concepts for Monitoring infrastructure, naturally effected by environmental influences. T2 - IABMAS CY - Melbourne, Australia DA - 09.07.2018 KW - SHM KW - Environmental changes KW - temperature PY - 2018 SN - 978-1-138-73045-8 SP - 1557 EP - 1564 PB - CRC Press AN - OPUS4-46059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Material qualification in Saline, copper containing geothermal water N2 - By exposure and electrochemical tests in the laboratory the Cu-effect on corrosion behavior of carbon steel, high-alloyed steels and Ti-alloy can be assessed. Critical materials specific properties were determined by static exposure and electrochemical tests in an artificial geothermal water with high salinity and low pH, containing Cu. Conclusions were drawn using characteristic potential values. It could be shown that significant Cu-deposition and -precipitation only occurred in combination with carbon steel. High-alloyed materials (S31603, S31653, S31700, S31703, S31803 and N08904) prevent the disturbing Cu-agglomeration. Therefore, they are suitable to be chosen for future design of the piping system, either in massive or in cladded form, if formation of crevices with non-metallic materials can be excluded. From the interactions and pitting corrosion point of view, R50400 seems to be most favorable. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - Copper KW - Corrosion KW - Steel KW - Geothermal energy PY - 2019 SP - 1 EP - 11 PB - NACE International CY - Houston AN - OPUS4-47911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence Of Brine Precipitates On Materials Performance In Geothermal Applications N2 - Since geothermal wells are a feasible energy source to replace fossil fuel supply, many technologies have been developed to take advantage of geothermal energy. Nevertheless, service conditions in geothermal facilities are in many cases extreme in terms of corrosion due to the chemical composition of hydrothermal fluids and temperatures. Therefore, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of the facilities. During operation of a geothermal research facility in Groß Schönebeck copper and lead effects have been found downhole. Occurring mechanisms and measures to prevent precipitation or scaling needed to be investigated as well as potential influences of such precipitates on corrosion resistance of metallic materials used for equipment. This contribution deals with the evaluation of the corrosion behavior of carbon steel and corrosion resistant alloys in copper and/or lead containing artificial geothermal water, simulating the conditions in the Northern German Basin. The behavior of these materials in an artificial geothermal water obtained by electrochemical measurements and exposure tests are presented. While carbon steel exhibits precipitation and deposition, higher alloyed material shows different response to such species and a higher resistance in saline geothermal water. Basing on these results the suitability of the investigated corrosion resistant alloy is given for use in such conditions, whereas carbon steel creates difficulties due to its susceptibility to Cu- and Pb-precipitation. T2 - AMPP Annual 2023 Conference CY - Denver, CO, USA DA - 19.03.2023 KW - Geothermal KW - Electrochemistry KW - Copper KW - Lead KW - Corrosion PY - 2023 SP - 1 EP - 15 PB - AMPP CY - Houston TX USA AN - OPUS4-57233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Hille, Falk A1 - Hofmann, Detlev A1 - Kind, Thomas ED - Isecke, B. ED - Krieger, J. T1 - Überwachung der Brücke Altstädter Bahnhof, Brandenburg./H. Begleituntersuchungen mit moderner Sensorik und zerstörungsfreier Prüfung N2 - Die B1 Brücke am Altstädter Bahnhof in Brandenburg an der Havel wurde im Dezember 2019 aufgrund von während einer turnusmäßigen Inspektion entdeckten Rissen und Hohlstellen entlang der vorgespannten Längsträger gesperrt und im Mai 2021 abgebrochen. In der Zwischenzeit wurde die Brücke detailliert überwacht. Vor dem Abriss wurden zudem umfangreiche Untersuchungen zur Bestandsaufnahme und Schadensanalyse sowie Tests moderner Sensorik vorgenommen. Dabei konnte sowohl die richtige, zuvor nicht sicher bekannte Anzahl von Spanngliedern in den Querträgern sicher ermittelt werden als auch durch moderne Varianten der Schwingungsmessungen und der faseroptischen Sensorik zusätzliche Kenntnisse püber das Bauwerksverhalten ermittelt werden . In dem Beitrag werden die Verfahren mit ihren Möglichkeiten und Grenzen vorgestellt, die Ergebnissee an der Brücke in Brandenburg erläutert und zukünftige Einsatzmöglichkeiten diskutiert. T2 - 5. Brückenkolloquium CY - Ostfildern, Germany DA - 06.09.2022 KW - Monitoring KW - Brücke KW - Radar KW - Vibration KW - Faseroptik PY - 2022 SN - 978-3-8169-3549-0 SP - 555 EP - 566 PB - Expert Verlag CY - Tübingen AN - OPUS4-55627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 DO - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph T1 - A Coating System for Corrosion Protection of Carbon Steel as an Alternative for High Alloyed Materials N2 - Corrosive geothermal brines are a major challenge to geothermal power-plants. For cost reasons, plant designers favorize low alloyed steels, e.g., carbon steel, which are susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic and saline properties. To solve such problem, coatings or inhibitors would be a protective solution as an alternative to the use of high alloyed materials. This study investigated a coating system consisting of polyaniline/silicon dioxide basing on locally available resources. Protection against corrosion of carbon steel is shown by long-term exposure and electrochemical tests of coated carbon steels, performed in an artificial acidic and saline geothermal brine, comparable to real conditions at a site in Indonesia. Therefore, an integrated coating system is presented for corrosion protection, combining the electro-chemical functionality of polyaniline and the physical advantages of silica. T2 - European Geothermal Congress CY - Berlin, Germany DA - 17.10.22 KW - Corrosion KW - Geothermal KW - Coatings KW - Polyaniniline KW - Silicate PY - 2022 SP - 1 EP - 7 CY - Berlin AN - OPUS4-56085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herzel, Hannes A1 - Krüger, Oliver A1 - Adam, Christian T1 - Phosphorus fertilizer from sewage sludge ashes by thermochemical treatment - Benefits and challenges N2 - Mineral phosphorus (P) fertilizers are solely produced from phosphate rock. Europe completely depends on imports since there are no relevant phosphate rock deposits on the continent. Furthermore, phosphate rock is contaminated with heavy metals such as Cd and U that pollute the farmlands and pose environmental risks. Sewage sludge ash (SSA) might be a promising source for recycling fertilizer since it contains large amounts of P (up to 13 %). However, fertilizer from SSA has to comply with the respective ordinances, particularly the heavy metal limit values stated in the fertilizer ordinance, and requires sufficient P bioavailability. Thus, we conducted a complete survey of SSA from German mono-incineration facilities and developed a thermochemical treatment for SSA to reduce toxic elements and increase P bioavailability. T2 - RAMIRAN 2015 - 16th International conference Rural-Urban Symbiosis CY - Hamburg, Germany DA - 08.09.2015 PY - 2015 SN - 978-3-941492-95-0 SP - TA EP - O_20, 33 AN - OPUS4-34311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Suhendra, Suhendra A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Tetzlaff, K. T1 - Production of marketable multi-nutrient fertilisers from different biomass ashes and industrial by-products N2 - Sewage sludge ashes (SSA) contain considerable mass fractions of phosphorus (5-10 w-% P) suitable for fertiliser production. Unfortunately, also most of the heavy metals remain in the ashes. A thermochemical process was developed for the treatment of SSA to i) remove heavy metals and ii) transform phosphates into bio-available mineral phases. The technology was already demonstrated in technical scale (capacity of 300 kg/h) and the company OUTOTEC is currently planning the first industrial plant. In order to manufacture a marketable multi-nutrient fertiliser from the thermochemically treated SSA further wastes and industrial by-products were taken into account. Ammonium sulphate occurs as a by-product of the caprolactam production and was chosen as N-carrier (21 w-% N). Straw ash was tested as potassium carrier (11-15 w-% K). Granulation campaigns were carried out with intensive mixers in lab-, medium-and technical scale. NPS-and NPKS-fertilisers were produced that were characterised by suitable particle size distributions and strength. T2 - ASH Utilisation 2012 CY - Stockholm, Sweden DA - 25.01.2012 KW - Sewage sludge ash KW - Recycling fertiliser KW - Heavy metals KW - Thermochemical treatment KW - Bioavailability PY - 2012 SP - 1 EP - 7 CY - Stockholm, Sweden AN - OPUS4-25496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. ED - Simani, S. ED - Patan, K. T1 - Asymptotic analysis of subspace-based data-driven residual for fault detection with uncertain reference N2 - The local asymptotic approach is promising for vibration-based fault diagnosis when associated to a subspace-based residual function and efficient hypothesis testing tools. It has the ability of detecting small changes in some chosen system parameters. In the residual function,the left null space of the observability matrix associated to a reference model is confronted to the Hankel matrix of output covariances estimated from test data. When this left null space is not perfectly known from a model, it should be replaced by an estimate from data to avoid model errors in the residual computation. In this paper, the asymptotic distribution of the resulting data-driven residual is analyzed and its covariance is estimated, which includes also the covariance related to the reference null space estimate. The advantages of the data-driven residual are demonstrated in a numerical study, and the importance of including the covariance of the reference null space estimate is shown, which increases the detection Performance. T2 - 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2018 CY - Warsaw, Poland DA - 29.08.2018 KW - Subspace-based method KW - Fault detection KW - Uncertainty in reference KW - Residual evaluation KW - Statistical tests KW - Vibration measurements PY - 2018 DO - https://doi.org/10.1016/j.ifacol.2018.09.610 SN - 2405-8963 VL - 51 IS - 24 SP - 414 EP - 419 PB - Elsevier AN - OPUS4-46303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Rabe, J. A1 - Marx, S. ED - Baeßler, Matthias ED - Möller, G. ED - Rogge, Andreas ED - Schiefelbein, N. T1 - Datenmanagement und –analyse von kontinuierlichen Datenströmen bei Offshore Windparks N2 - Mit der Errichtung und der Inbetriebnahme des Windpark alpha ventus wurden umfangreiche Messungen an den Tragstrukturen und den Umgebungsparametern durchgeführt. Im Projekt Gigawind life wurde im TP1 ein Datenmanagementsystem zur kontinuierlichen und periodisch fortgeführten Datenauswertung für große Datenbestände (Big Data) entworfen und realisiert. Anhand von Performanceuntersuchungen konnte eine Verkürzung der Rechenzeit um den Faktor 10 in einem Rechencluster erreicht werden. Unter Anwendung einer Datenpipeline nach dem Publish/Subscribe Prinzip wird eine skalierbare Datenschnittstelle für Monitoringdaten vorgeschlagen. T2 - Messen im Bauwesen 2018 CY - Berlin, Germany DA - 13.11.2018 KW - Datenmanagement KW - Big Data KW - Windenergie PY - 2018 SN - 978-3-9818564-1-5 VL - 2018/1 SP - 89 EP - 98 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46918 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Effect of CO2 gas on carbon steel corrosion in an acidic-saline based geothermal fluid N2 - Geothermal energy is one of the most promising energy resources to replace fossil fuel. To extract this energy, hot fluids of various salts and gases are pumped up from a geothermal well having a certain depth and location. Geothermal wells in volcanic regions often contain highly corrosive CO2 and H2S gases that can be corrosive to the geothermal power-plants, which are commonly constructed of different steels, such as carbon steel. This research focuses on the corrosion behaviour of carbon steel exposed to an artificial geothermal fluid containing CO2 gas, using an artificial acidic-saline geothermal brine as found in Sibayak, Indonesia. This medium has a pH of 4 and a chloride content of 1,500 mg/L. Exposure tests were conducted for seven days at 70 °C and 150 °C to simulate the operating temperatures for low and medium enthalpy geothermal sources. Surface morphology and cross-section of the specimens from the above experiments were analysed using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical tests via open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were performed to understand the corrosion processes of carbon steel in CO2-containing solution both at 70 °C and 150 °C. Localized corrosion was observed to a greater extent at 70 °C due to the less protectiveness of corrosion product layer compared to that at 150 °C, where FeCO3 has a high corrosion resistance. However, a longer exposure test for 28 days revealed the occurrence of localized corrosion with deeper pits compared to the seven-day exposed carbon steel. In addition, corrosion product transformation was observed after 28 days, indicating that more Ca2+ cations incorporate into the FeCO3 structure. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon steel KW - CO2 KW - EIS KW - Geothermal KW - Corrosion PY - 2019 SP - Paper 200245, 1 EP - 5 CY - Madrid, Spain AN - OPUS4-49099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Adapting intumescent/low-melting glass flame-retardant formulations for transfer to glass-fiber-reinforced composites and post-fire mechanical analysis N2 - The residual post-fire mechanical properties of fiber-reinforced epoxy composites are influenced by their fire residues after burning. This study uses intumescent/low-melting glass flame retardants to tailor fire residues in epoxy resin. Processibility of prepregs and their quality are analysed for transfer of the flame-retardant epoxy resins to layered glass-fiber reinforced composites. Minimal effects were found on the pre-fire flexural strengths of the composites due to low loading of the flame retardants. However, when transferred to glass-fiber reinforced composites, the fire residues diminish significantly. Further studies are required to improve theoretical and experimental estimations of the post-fire mechanics of the composites. T2 - SAMPE Europe Conference 2023 CY - Madrid, Spain DA - 03.10.2023 KW - Fire residue KW - Prepregs KW - Mechanics KW - Lightweight materials KW - Composites KW - Flame retardancy PY - 2023 SP - 1 EP - 7 AN - OPUS4-59138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -