TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André A1 - Müller, Karsten T1 - Instrumented measurements on radioactive waste disposal containers during experimental drop testing N2 - In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing T2 - ICEM 2011 - 14th International Conference on environmental remediation and radioactive waste management CY - Reims, France DA - 25.09.2011 KW - Drop test KW - Radioactive KW - Disposal container KW - Instrumented measurements PY - 2011 DO - https://doi.org/10.1115/ICEM2011-59142 SP - 929 EP - 938 AN - OPUS4-27044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Scheidemann, Robert A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Investigation of the internal impact during a 9 m drop test of an accident-safe waste package N2 - The safety assessment of packages for the transport of radioactive material follows the IAEA regulations and guidance. The specified regulatory tests cover severe accidents and demonstrate the package containment system integrity. Special attention must be drawn to the behaviour of the content which could move inside the package due to unpreventable gaps caused by the loading procedure and the structure of the content. A possible internal impact of the content which occurs during the drop tests onto the lid system is investigated. The IAEA regulations SSR-6 and the Guidance SSG-26, revised recently, consider input from Germany and France related to the significance of internal gaps. In the context of a waste package design assessment, a model was equipped with a representative content to conduct a drop test with an internal impact. The weight and kinetic impact of this content covered all possible real contents. The objective of the test was to maximize the load onto the lid system and to prove the mechanical integrity by complying with the required leak tightness. The test was conducted conservatively at a package temperature lower than -40 °C at the BAM Test Site Technical Safety. This paper gives an overview of efforts to address internal gaps and their consequences, and the BAM efforts with the implementation of this topic into IAEA regulations and guidance material. The paper then focuses on the conduction of a drop test and investigation of internal component impact. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Internal gaps KW - Drop test KW - IAEA PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-60996 SP - 1 EP - 6 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Carletti, E. ED - Crocker, M. ED - Pawelczyk, M. ED - Tuma, J. T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th International Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 SN - 978-83-7880-799-5 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University Press CY - Gliwice, Poland AN - OPUS4-53255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Musolff, André A1 - Droste, Bernhard T1 - Quality assurance requirements for mechanical test campaigns of packagings N2 - A management system based on international, national or other standards acceptable to the competent authority shall be established and implemented for all activities including design, manufacture, testing, documentation, use, maintenance, inspection in accordance with IAEA SSR-6. Hereby, quality assured testing and documentation can substantially contribute to the demonstration of package design compliance with the regulations. Nowadays, a drop test campaign within the approval process of packages for radioactive materials can be a very complex and extensive project including various test and measurement techniques. On this basis of procedures and documents the experimental tests of packages and containers are performed with quality proofed results and a high reliability. A complete traceability and direct transferability of package design test results can give particular importance to the type approval procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Quality assurance KW - Packaging KW - Drop test PY - 2013 SP - Paper 181, 1 EP - 7 PB - Omnipress AN - OPUS4-30493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael A1 - Köppe, Tabea T1 - Multichannel measuring of strain and acceleration during high impact drop tests with a single cable system N2 - Multichannel measuring systems are used to measure strains and accelerations during drop tests of containments for dangerous goods. Conventional systems require cabling of each sensor and co-falling of the cable harness, causing problems in the test preparation and execution. Promising results of a single cable measuring system, consisting of measuring modules with data bus connection and local data acquisition were obtained in laboratory investigations and full-scale drop tests. T2 - Sensoren und Messsysteme 2014 - 17. ITG/GMA-Fachtagung CY - Nürnberg, Germany DA - 03.06.2014 KW - Multichannel measuring KW - Single cable system KW - Drop test PY - 2014 SN - 978-3-8007-3622-5 SN - 0932-6022 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. N1 - Serientitel: ITG-Fachbericht – Series title: ITG-Fachbericht VL - 250 SP - Article 66, 1 EP - 5 PB - VDE Verlag GmbH AN - OPUS4-30859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental testing of impact limiters for RAM packages under drop test conditions N2 - In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Drop test KW - Impact limiters KW - RAM packages KW - Measurement methods PY - 2013 SP - 1 EP - 9 PB - Omnipress AN - OPUS4-31040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Gründer, Klaus-Peter T1 - Experimental investigation of RAM packages impact limiters - 14256 N2 - In context with new cask designs and their approval procedure the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behavior and safety margins for validation reasons. In recent years various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing (BAM) within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realization of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behavior by means of photogrammetric metrology and 3-d fringe projection method, high-speed motion analysis and adjusted deceleration measurements. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Drop test KW - Impact limiters KW - RAM packages KW - Measurement methods PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14256, 1 EP - 10 AN - OPUS4-31050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Musolff, André A1 - Komann, Steffen T1 - Dynamic finite element analyses of a spent fuel transport and storage cask with impact limiters by 9 meter drop tests N2 - The 9 meter drop onto an unyielding target is one of the important mechanical tests within the safety assessment of transport casks for radioactive material. In general, the cask is equipped with impact limiters to reduce the dynamic load on the cask body by absorbing a major part of the kinetic energy. The impact limiters are often made of wood or aluminium. In this study an elastic-plastic material model with volume change was used to describe the stress-strain behaviour of wood found in crush tests. For aluminium, an elastic-incremental plastic material model with Cowper-Symonds parameters for strain rate depending material hardening was used to model the adiabatic stress-strain relations measured at specimens at constant ambient temperature. Hereafter simulations with a sophisticated finite element model were carried out and compared with different drop tests. Four drop tests of a half-scale cask model equipped with wood and aluminium impact limiters with different drop positions were selected to investigate the impact limiter behaviour during a 9 meter drop test. All drop tests were simulated with the same FE mesh but under different boundary and initial conditions. T2 - SIMULIA Customer conference CY - Barcelona, Spain DA - 17.05.2011 KW - Cask KW - Drop test KW - Impact limiter KW - Wood KW - Aluminium KW - Dynamics PY - 2011 SP - 932 EP - 944 AN - OPUS4-23706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Favre, A. A1 - Hilbert, F. A1 - Quercetti, Thomas A1 - Neumeyer, Tino A1 - Weingart, Barbara T1 - Prototype testing of a protective structural packaging for 30B cylinder N2 - Three drop test campaigns have been performed with DN 30 Protective Structural Packaging (PSP) developed by DAHER NUCLEAR TECHNOLOGIES GmbH for the transport of natural, enriched and reprocessed uranium hexafluoride (up to 5 wt%) in 30B cylinders. The mechanical prototype testing is intended to demonstrate that the package DN30 complies with regulatory requirements under normal and hypothetical accident conditions of transport (NCT, ACT) relevant to IF, AF and B(U)F packages, respectively. The paper includes the results of the latest test campaign carried out in 2015-2016 at the drop test facility of BAM, Germany with new full scale prototypes of the DN30 PSP and 30B cylinders. Repetition of drop test sequences became necessary after changing to Polyisocyanurate foam as shock absorbing material with variable foam densities. Furthermore, the mechanical behavior of the UF6 content of the 30B cylinder is now simulated by a mixture of cement and steel grid as modified surrogate material; instead of small steel balls. The behavior of this new content simulation is assumed to be more realistic with respect to the properties of real UF6. T2 - PATRAM 2016, 18th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Kobe, Japan DA - 18.09.2016 KW - Drop test KW - Packaging KW - Radioactive material KW - Uranium hexafluoride PY - 2016 SP - Paper 1018, 1 EP - 11 PB - INMM CY - Deerfield, Illinois, USA AN - OPUS4-37568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Protz, Christian A1 - Zencker, Uwe A1 - Liebich, R. T1 - Explicit finite element analyses of drop tests with thin-walles steel sheet containers for the Konrad repository N2 - Alternatively to experimental drop tests, the mechanical safety analyses of containers for final disposal of radioactive waste with negligible heat generation in the German Konrad repository may be carried out by numerical simulations within the safety assessment procedure. In the past, safety assessments for thin-walled steel sheet containers have been done exclusively by prototype tests and unfavorable drop scenarios were determined by engineering judgment. So far, reliable numerical simulations do not exist. Therefore, a research project was started to develop numerical simulation approaches for drop test analyses and to determine existing safety margins. Comparisons of experimental and numerical results confirm that the Finite Element (FE) model represents the general mechanical behavior of the steel sheet container sufficiently. Simulations have been used to determine an unfavorable drop scenario resulting in large deformation and damage. This paper presents the investigations carried out as well as the further development of the FE model in terms of damage mechanics. T2 - ASME 2015 Pressure vessels & piping conference - PVP2015 CY - Boston, Massachusetts, USA DA - 19.07.2015 KW - Explicit dynamic FEM KW - Impact KW - Drop test KW - Steel sheet container KW - Ductile damage KW - Damage mechanics PY - 2015 SN - 978-0-7918-5702-1 SP - PVP2015-45522, 1-10 AN - OPUS4-33805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Impact Analysis of RAM Packages under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - RAM packages KW - Drop test KW - Impact KW - Radioactive PY - 2016 UR - http://www.patram2016.org/ SP - Paper 1030, 1 AN - OPUS4-38859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Comparison of experimental results and numerical simulations of penetration tests with damping concrete N2 - The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined Parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Drop test KW - Damping concrete KW - Cask KW - Material model PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A034, 1 EP - 6 PB - The American Society of Mechanical Engineers CY - New York AN - OPUS4-44042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias ED - Werner, Klaus-Dieter T1 - Temperature characteristics of a piezoresistive accelerometer for high impact shock application N2 - This study presents the characterization of a piezoresistive accelerometer damped with silicon oil for the application in drop tests carried out at BAM. Experiments were performed with the Hopkinson Bar method in close correlation to the real-world application conditions. The results point out certain limitations regarding the temperature influence and the frequency response. Additional experiments were performed with a gas damped type of piezoresistive accelerometer, which has superior specifications, particularly for low temperatures. The results allow for a comparison. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Piezoresistive accelerometer KW - High impact shock application KW - Drop test KW - Temperature characteristics KW - Hopkinson bar PY - 2018 SN - 978-3-8007-4683-5 SN - 0932-6022 SP - 465 EP - 467 PB - VDE Verlag GmbH CY - Berlin AN - OPUS4-45323 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Design assessment by bam of a new package design for the transport of snf from a german research reactor N2 - For disposal of the German research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities. The Bundesanstalt für Materialforschung und -prüfung (BAM) assessed the mechanical and thermal package safety and performed drop tests. The activity release approaches and subjects of quality assurance and surveillance for manufacturing and operation of the package were assessed by BAM as well. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask a wood-filled impact limiter is installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel assemblies is arranged. For the safety case a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop test were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of Finite-Element-Analysis (FEA) used for the safety analysis of the package design. The finite-element models incorporated in the package design safety report include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters. Additional calculations using the verified numerical models were done by the applicant and assessed by BAM to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure. This paper describes the package design assessment from the view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Numerical modelling KW - Drop test KW - Assessment method KW - Ductile cast iron KW - Package design KW - Experimental testing PY - 2019 SP - Paper 1176, 1 AN - OPUS4-49054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Safety Evaluation of a Package for Radioactive Waste by Full-Scale Drop Testing N2 - As part of the evaluation of a package for the safe transport of radioactive waste the regulations of the IAEA International Atomic Energy Agency shall be fulfilled. The regulations define requirements for the package and specify mechanical and thermal test conditions. Different methods are allowed for the test performance to demonstrate compliance with the regulations. Next to calculational approaches and the use of models of an appropriate scale, the performance of full-scale testing with prototype packages respectively full-scale models is applied. The use of full-scale models has several advantages within the complete safety assessment procedure for a transport package approval. Scaling and corresponding similarity questions don’t have to be considered, additional material investigations can be limited and analyses to transfer test results to the original package design are reduced in number and complexity. Additionally, experience for future serial design procedures can be built up during manufacturing and assembling of the test model. BAM operates different drop and fire test facilities south of Berlin, Germany. BAM has started to perform a drop test campaign with a full-scale model of 120 metric tons weight for a transport package approval procedure. The paper describes experience with test preparation, drop performance and additional analyses. The measurement concept is explained and test goals regarding the package safety assessment and evaluation of safety margins are introduced. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Slap-down KW - Transport safety KW - Package KW - Drop test KW - Similarity KW - FEA KW - Radioactive waste PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3809.xml SN - 987-981-14-8593-0 SP - Paper 3809,1 EP - 8 PB - Research Publishing Services CY - Singapore AN - OPUS4-50981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard T1 - Determination of material parameters of damping concrete under dynamic loading N2 - The safety and integrity of casks for radioactive waste in accidental scenarios is analysed by BAM Federal institute tor Materials Research and Testing. An accidental scenario in German interim storage facilities is the drop from a crane during the handling operation. To reduce the mechanical loads to the cask a shock absorbing footing with high energy absorption capability is used in these areas. In order to analyse and evaluate such impact scenarios of casks, numerical simulations are performed. For a comprehensive simulation of an accidental scenario the behaviour of the damping concrete footing has to be taken into account as well and therefor a material model is needed. Material parameters under different loading conditions are the basis for a numerical model. For that reason a government funded research project (Kasparek, 2012) was conducted to characterise damping concrete under quasi-static as well as highly dynamic impact loading conditions. The performed tests include compression tests with and without lateral constraint small-scale and midscale penetration tests with different indenters, and finally a full-scale drop test onto a damping concrete footing. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Drop test KW - Damping concrete KW - Material characterisation PY - 2015 SP - 1 EP - 9 AN - OPUS4-33492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from German research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLRWM2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Drop test KW - Package testing KW - Dual purpose cask PY - 2019 SN - 978-0-89448-761-3 VL - 2019 SP - paper 27283, 1 EP - 7 PB - ANS AN - OPUS4-50619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Johann, Sergej A1 - Daum, Werner ED - Cosmi, F. T1 - Characterization of the temperature behavior of a piezoresistive accelerometer N2 - Piezoresistive accelerometers use a strain-sensing element, generally made of semiconductor material, e.g., silicon to convert the mechanical motion into an electrical signal. This element is usually designed in form of a cantilever beam loaded with a mass. Acceleration causes bending of the beam, which produces a change of electrical resistance proportional to the applied acceleration. Main advantages of piezoresistive accelerometers in comparison to other types, e.g., piezoelectric and capacitive, is their robust and highly dynamic behavior, which qualifies them for application in high impact shock applications. Mechanical damping is typically implemented with silicon oil in a way that the output signal is undistorted over a wide frequency range. These characteristics principally qualify them for the application in drop tests carried out at BAM, for which they are calibrated over the frequency range from 1 to 4 kHz. However, using silicon oil for damping, has the drawback of temperature dependent change of its viscosity, leading to temperature dependent deviation of the accelerometer’s sensitivity. This study presents experimental results of the temperature behavior of a piezoresistive accelerometer with a dynamic range up to ±5000 g. This type of accelerometer is applied for drop tests which are partially performed at temperatures of -40 or +100 °C. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Accelerometer KW - Temperature behavior KW - Drop test PY - 2017 UR - https://www.openstarts.units.it/handle/10077/14921 SN - 978-88-8303-863-1 SP - 93 EP - 95 CY - Trieste AN - OPUS4-42109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Target KW - Drop test KW - Final repository Konrad PY - 2023 SP - 1 EP - 11 AN - OPUS4-58563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -