TY - CONF A1 - Zencker, Uwe A1 - Gaddampally, Mohan Reddy A1 - Völzke, Holger T1 - Fracture Mechanics Analysis of Spent Fuel Claddings during Long-Term Dry Interim Storage N2 - The prevention of brittle fracture of spent fuel claddings during long-term dry interim storage is based on experimental investigations, numerical analyses and assessment methods for predicting the mechanical behavior and determining limiting conditions. The ring compression test (RCT) is an established experimental method for characterizing cladding material. Test results for various high-burnup pressure water reactor zirconium-based fuel cladding alloys (e.g., ZIRLO®, M5®) are publicly available. To reduce the effort associated with irradiated samples in hot cells, it is helpful to perform studies on unirradiated surrogate cladding material. Based on such experimental data, load-displacement curves were numerically analyzed for selected cladding materials. In the presence of radial hydrides, a sample may suddenly fail by fracture even at small deformations. Noticeable load drops in the RCT occur associated to unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting neighboring hydrides. The failure process was simulated by cohesive zones controlled by the fracture energy and the cohesive strength. A modeling approach is presented in which the radial hydride morphology is taken into account. Based on the developed fracture mechanics approach with cohesive zone modeling, not only the deformation behavior but also the failure behavior of irradiated as well as unirradiated claddings with radial hydrides under RCT loading conditions can be adequately described. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2022) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Extended Interim Storage KW - Nuclear Fuel Cladding KW - Numerical Failure Analysis KW - Ring Compression Test KW - Spent Fuel Characterization PY - 2023 AN - OPUS4-59147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - EURAD WP 8 Task 3 Overview: Behaviour of nuclear fuel and cladding after discharge N2 - Task 3 of Work package 8 (Spent Fuel Characterization) of the European Joint Programme on Radioactive Waste Management (EURAD) investigates the behaviour of nuclear fuel and cladding after discharge. The aim of the work is to understand and describe the be-haviour of spent nuclear fuel (SNF), irradiated cladding, fuel/cladding chemical interaction (FCCI) and ageing under conditions of extended interim storage, transportation and em-placement in a final disposal system. BAM contributes to the project as partner and leads Task 3. The presentation gives an overview of the project status, main achievements in experimental work and modelling studies, deviations from the plan, delays and challenges ahead. T2 - EURAD Work Package 8 (SFC) Annual Meeting CY - Wettingen, Switzerland DA - 31.10.2023 KW - Nuclear fuel KW - Cladding KW - Discharge PY - 2023 AN - OPUS4-59148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - Spent Fuel Characterization - Current Activities at BAM N2 - The European Joint Programme on Radioactive Waste Management (EURAD) is working on Spent Fuel Characterization (SFC) in its work package (WP) 8. Inspired by the EURAD activities, the International Atomic Energy Agency (IAEA) established an international Coordinated Research Project (CRP) on SFC. The EURAD WP SFC participants are collaborating as a team on the IAEA CRP on SFC. The EURAD WP SFC project consists of four tasks. Task 3 investigates the behaviour of nuclear fuel and cladding after discharge. The aim of these activities is to understand and describe the evolution of the cladding-pellet system and its ageing under conditions of extended interim storage, transportation and emplacement in a final disposal system. At a Consultancy Meeting, BAM as contributor to Task 3 presented current results of the failure analysis of irradiated ZIRLO® claddings under conditions of the Ring Compression Test. T2 - IAEA Consultancy Meeting on the Coordinated Research Project on Spent Fuel Characterization CY - Online meeting DA - 12.09.2023 KW - Nuclear Fuel Cladding KW - Numerical Failure Analysis KW - Ring Compression Test KW - Spent Fuel Characterization KW - Extended Interim Storage PY - 2023 AN - OPUS4-58276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing T2 - PATRAM 2022 Proceedings N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Target KW - Drop test KW - Final repository Konrad PY - 2023 SP - 1 EP - 11 AN - OPUS4-58563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Gaddampally, Mohan Reddy A1 - Völzke, Holger T1 - Fracture Mechanics Analysis of Spent Fuel Claddings during Long-Term Dry Interim Storage T2 - PATRAM 2022 Proceedings N2 - The prevention of brittle fracture of spent fuel claddings during long-term dry interim storage is based on experimental investigations, numerical analyses and assessment methods for predicting the mechanical behavior and determining limiting conditions. The ring compression test (RCT) is an established experimental method for characterizing cladding material. Test results for various high-burnup pressure water reactor zirconium-based fuel cladding alloys (e.g., ZIRLO®, M5®) are publicly available. To reduce the effort associated with irradiated samples in hot cells, it is helpful to perform studies on unirradiated surrogate cladding material. Based on such experimental data, load-displacement curves were numerically analyzed for selected cladding materials. In the presence of radial hydrides, a sample may suddenly fail by fracture even at small deformations. Noticeable load drops in the RCT occur associated to unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting neighboring hydrides. The failure process was simulated by cohesive zones controlled by the fracture energy and the cohesive strength. A modeling approach is presented in which the radial hydride morphology is taken into account. Based on the developed fracture mechanics approach with cohesive zone modeling, not only the deformation behavior but also the failure behavior of irradiated as well as unirradiated claddings with radial hydrides under RCT loading conditions can be adequately described. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2022) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Extended Interim Storage KW - Nuclear Fuel Cladding KW - Numerical Failure Analysis KW - Ring Compression Test KW - Spent Fuel Characterization PY - 2023 SP - 1 EP - 8 AN - OPUS4-59146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - EURAD WP 8 Task 3 Overview: Behaviour of nuclear fuel and cladding after discharge N2 - Task 3 of Work package 8 (Spent Fuel Characterization) of the European Joint Programme on Radioactive Waste Management (EURAD) investigates the behaviour of nuclear fuel and cladding after discharge. The aim of the work is to understand and describe the behaviour of spent nuclear fuel (SNF), irradiated cladding, fuel/cladding chemical interaction (FCCI) and ageing under conditions of extended interim storage, transportation and emplacement in a final disposal system. BAM contributes to the project as partner and leads Task 3. The presentation gives an overview of the project status, main achievements in experimental work and modelling studies, deviations from the plan, delays and challenges ahead. T2 - EURAD Work Package 8 (SFC) Annual Meeting CY - Kalmar, Sweden DA - 19.09.2022 KW - Nuclear fuel KW - Cladding KW - Discharge PY - 2022 AN - OPUS4-56120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - EURAD WP 8 (SFC) Task 3 - Update: Behaviour of nuclear fuel and cladding after discharge N2 - The European Joint Programme on Radioactive Waste Management (EURAD) is working on Spent Fuel Characterization (SFC) in its work package (WP) 8. Inspired by the EURAD activities, the International Atomic Energy Agency (IAEA) established an international Coordinated Research Project (CRP) on SFC. The EURAD WP SFC participants are collaborating as a team on the IAEA CRP on SFC. The EURAD WP SFC project consists of four tasks. Task 3 investigates the behaviour of nuclear fuel and cladding after discharge. The aim of these activities is to understand and describe the evolution of the cladding-pellet system and its ageing under conditions of extended interim storage, transportation and emplacement in a final disposal system. At the Second Research Coordination Meeting on Spent Fuel Characterization, BAM as leader of Task 3 reported on the status of the research work. T2 - IAEA 2nd Research Coordination Meeting of the Coordinated Research Project on Spent Fuel Characterization CY - Kalmar, Sweden DA - 20.09.2022 KW - Nuclear fuel KW - Cladding KW - Discharge PY - 2022 AN - OPUS4-56121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Völzke, Holger T1 - Entwicklung eines bruchmechanischen Berechnungsansatzes zur Beschreibung des Festigkeitsverhaltens von Brennstabhüllrohren bei längerfristiger Zwischenlagerung (BRUZL) N2 - Es werden Methoden zur sicherheitstechnischen Bewertung des mechanischen Verhaltens von Brennstabhüllrohren entwickelt, um sprödes Versagen in Belastungsszenarien nach längerfristiger trockener Zwischenlagerung zu verhindern. Unbestrahlte Brennstabhüllrohrsegmente aus der Zirkoniumlegierung ZIRLO® wurden hydriert und thermomechanischen Behandlungen unterzogen, um Hüllrohrmaterial durch Ausscheidung radialer Hydride zu verspröden. Die Proben mit radialen Hydriden wurden im Ring Compression Test (RCT) bei Raumtemperatur untersucht. Bereits bei kleinen Probenverformungen wurden abrupte Kraftabfälle mit instabiler Rissausbreitung durch das Netzwerk radialer Hydride beobachtet. Die Risslängen erreichten in einigen Fällen bis zu 90 % der Wanddicke. Der mikromechanische Versagensmechanismus ist Quasi-Spaltbruch in den Hydriden und Porenbildung, -wachstum und -vereinigung in der Zirkoniummatrix an den duktilen Brücken zwischen benachbarten Hydriden. Es wurde ein Finite-Elemente-Modell des Ring Compression Tests erstellt, um das Versagensverhalten zirkoniumbasierter Legierungen mit radialen Hydriden im RCT zu analysieren. Die Fließkurve für das elastisch-plastische Materialmodell des Matrixmaterials wurde durch eine inverse Finite-Elemente-Analyse ermittelt. Kohäsivzonenmodelle wurden benutzt, um die plötzlichen Kraftabfälle zu reproduzieren. Es wurde ein mikromechanisches Modell mit statistisch generierten Matrix-Hydrid-Verteilungen entwickelt, das zwischen sprödem Versagen entlang der Hydride und duktilem Versagen der Zirkoniummatrix in der Kohäsivzone unterscheidet. Für das jeweilige Materialverhalten wird ein lokales zweiparametriges Versagenskriterium auf Grundlage der Kohäsionsfestigkeit und der Separationsenergie bei einer festgelegten Form des Kohäsivgesetzes vorgeschlagen. Geeignete Kohäsivparameter lassen sich mit einer inversen Finite-Elemente-Analyse des Versagensverhaltens von hydrierten Proben im Ring Compression Test bestimmen. In den Simulationen lag der Schwerpunkt auf dem ersten Kraftabfall. Die Berechnungsergebnisse stimmen gut mit den RCT-Ergebnissen überein. Es konnte gezeigt werden, dass die Rissinitiierung und -ausbreitung stark von der speziellen Anordnung der radialen Hydride und Matrixbrücken in der Bruchzone abhängt. Die numerische Modellbildung wurde an Versuchen mit bestrahlten Proben aus der Zirkoniumlegierung M5® validiert. KW - Zwischenlagerung KW - Brennstabhüllrohr KW - Versagensmechanismus KW - Kohäsivzonenmodell KW - Ring Compression Test PY - 2022 SP - 1 EP - 106 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56853 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Billone, M. C. A1 - Zencker, Uwe A1 - Liu, Y. Y. A1 - Völzke, Holger T1 - Brittle Failure Analysis of High-Burnup PWR Fuel Cladding Alloys T2 - SMiRT 26 Conference Proceedings N2 - The general aim of this research is the development of methods for predicting mechanical behavior and identification of limiting conditions to prevent brittle failure of high-burnup (HBU) pressure water reactor (PWR) fuel cladding alloys. A finite element (FE) model of the ring compression test (RCT) was created to analyze the failure behavior of zirconium-based alloys with radial hydrides during the RCT. An elastic-plastic material model describes the zirconium alloy. The stress-strain curve needed for the elastic-plastic material model was derived by inverse finite element analyses. Cohesive zone modeling is used to reproduce sudden load drops during RCT loading. Based on the failure mechanism in non-irradiated ZIRLO® claddings, a micro-mechanical model was developed that distinguishes between brittle failure along hydrides and ductile failure of the zirconium matrix. Two different cohesive laws representing these types of failure are present in the same cohesive interface. The key differences between these constitutive laws are the cohesive strength, the stress at which damage initiates, and the cohesive energy, which is the damage energy dissipated by the cohesive zone. Statistically generated matrix-hydride distributions were mapped onto the cohesive elements and simulations with focus on the first load drop were performed. Computational results are in good agreement with the RCT results conducted on high-burnup M5® samples. It could be shown that crack initiation and propagation strongly depend on the specific configuration of hydrides and matrix material in the fracture area. T2 - 26th International Conference on Structural Mechanics in Reactor Technology - SMiRT 26 CY - Potsdam, Germany DA - 10.07.2022 KW - Cladding Embrittlement KW - Cohesive Zone Modelling KW - Spent Nuclear Fuel KW - Ring Compression Test PY - 2022 SP - 1 EP - 10 AN - OPUS4-55434 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Caruso, Stefano A1 - Vlassopoulos, Efstathios A1 - Dagan, Ron A1 - Fiorito, Luca A1 - Herm, Michel A1 - Jansson, Peter A1 - Kromar, Marjan A1 - Király, Márton A1 - Leppanen, Jaakko A1 - Feria Marquez, Francisco A1 - Metz, Volker A1 - Papaioannou, Dimitrios A1 - Herranz, Luis Enrique A1 - Rochman, Dimitri A1 - Schillebeeckx, Peter A1 - Seidl, Marcus A1 - Hernandez Solis, Augusto A1 - Stankovskiy, Alexey A1 - Alvarez Velarde, Francisco A1 - Verwerft, Marc A1 - Rodriguez Villagra, Nieves A1 - Zencker, Uwe A1 - Žerovnik, Gasper T1 - EURAD - Work Package 8 - Deliverable 8.1 - State-of-the-art report N2 - A state-of-the-art (SOTA) review on characterisation of spent nuclear fuel (SNF) properties in terms of source term and inventory assessment (neutron, gamma-ray emission, decay heat, radionuclide inventory, elemental content) and in terms of out-of-core fuel performance (cladding performance and fuel integrity in view of the safety criteria for SNF interim storage, transport and canister packaging) using several numerical and experimental approaches and methodologies is presented. This SOTA report is a result of the spent fuel characterisation (SFC) work package as part of the European Joint Programme on Radioactive Waste Management (EURAD), which offers an overview of the status of knowledge in the field of SNF characterisation and assessment during the pre-disposal phase. The document aims to focus on the current safety-significant gaps and related challenges, providing a direct link to the goals of the mandated actors of EURAD. The report is expected to be used by all EURAD colleagues in their national programmes as a key resource for knowledge management programmes and to contribute to demonstrating and documenting the state-of-the-art. KW - Radioactive waste management KW - Spent fuel characterisation KW - Extended interim storage KW - Predisposal PY - 2022 UR - https://www.ejp-eurad.eu/publications/eurad-d81-state-art-report SP - 1 EP - 112 PB - Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA) CY - Châtenay-Malabry AN - OPUS4-59154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -