TY - JOUR A1 - Yuan, Huan A1 - Gornushkin, Igor B. A1 - Gojani, Ardian A1 - Wang, X. H. A1 - Rong, Ming Zhe T1 - Laser-induced plasma imaging for low-pressure detection JF - Optics Express N2 - A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1364/OE.26.015962 SN - 1094-4087 VL - 26 IS - 12 SP - 15962 EP - 15971 PB - Optical Society of America under the terms of the OSA Open Access Publishing Agreement AN - OPUS4-45219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. T1 - Investigation of laser-induced plasma at varying pressure and laser focusing JF - Spectrochimica Acta Part B N2 - Expansion dynamics of laser-induced plasma is studied for different focal positions of the ablation laser in the pressure range 10-2 - 105 Pa of the ambient air. The experimental results indicate that both the parameters significantly affect the plasma size, shape, intensity, reproducibility, and distance from the target surface. At pressures above 10 Pa, the plasma plume is confined by the ambient gas; the plumes are more compact and travel shorter distances from the target as compared to the analogous plume characteristics at pressures below 10 Pa. The pulse-to-pulse reproducibility of the integral emission intensity of the plasma is also different for different focal positions and pressures. It is found that the focal positions -1 cm and -2 cm below the target surface yield the most reproducible and intense emission signals as measured at the 600 ns delay time with the 100 ns gate. The information obtained can be of importance for pulsed laser deposition, laser welding, and analytical spectroscopy at reduced pressures. In general, a correct choice of the focal position and pressure of an ambient gas is very important for obtaining the strongest plasma emission, good reproducibility, and desired plasma plume shape. KW - Laser-induced plasma KW - Plasma expansion KW - Imaging PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.10.005 SN - 0584-8547 VL - 150 SP - 33 EP - 37 PB - Elsevier AN - OPUS4-46207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -