TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller JF - Thermochimica Acta N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, N. A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and MgAl layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller JF - Polymer N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA ist crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller for this system. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. KW - Polymer based nanocomposites PY - 2017 DO - https://doi.org/10.1016/j.polymer.2016.11.065 SN - 0032-3861 SN - 1873-2291 VL - 108 SP - 257 EP - 264 PB - Elesevier AN - OPUS4-39052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Purohit, Purv A1 - Kang, N. A1 - Wang, D.-Y. A1 - Falkenhagen, Jana A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Schönhals, Andreas T1 - Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides JF - European polymer journal N2 - Nanocomposites based on poly(ʟ-lactide) (PLA) and organically modified MgAl Layered Double Hydroxides (MgAl-LDH) were prepared by melt blending and investigated by a combination of Differential Scanning Calorimetry (DSC), Small- and Wide-Angle X-ray Scattering (SAXS, WAXS), and dielectric spectroscopy (BDS). Scanning microfocus SAXS investigations show that the MgAl-LDH is homogeneously distributed in the matrix as stacks of 6 layers and/or partly exfoliated layers. DSC and WAXS show that the degree of crystallinity decreases linearly with the content of LDH. The extrapolation of the dependencies (DSC and WAXS) to zero estimates a limiting concentration of LDH CCri of ca. 21 wt% where the crystallization of PLA is completely suppressed by the nanofiller. The dielectric behavior of neat PLA show two relaxation regions, a β-relaxation at low temperatures related to localized fluctuations and the α-relaxation at higher temperatures due to the dynamic glass transition. The dielectric spectra of the nanocomposites show several additional relaxation processes compared to neat PLA which are discussed in detail. For the nanocomposites around 260 K (ƒ = 1 kHz) an additional process is observed which intensity increases with increasing concentration of LDH. This process is mainly attributed to the exchanged dodecylbenzene sulfonate (SDBS) molecules which are adsorbed at the LDH layers and form a mixed phase with the polymer close to the layers and stacks. An analysis of this process provides information about the molecular dynamics in the interfacial region between the LDH layers and the PLA matrix which reveal glassy dynamics in this region. In the temperature range around 310 K (ƒ = 1 kHz) a further process is observed. Its relaxation rate has an unusual saddle-like temperature dependence. It was assigned to rotational fluctuations of water molecules in a nanoporous environment provided by the LDH filler. Above the glass transition temperature a further process is observed at temperatures above. It is related to Maxwell/Wagner/Sillars polarization due to the blocking of charges at the nanofiller. KW - Polymer based nanocomposites KW - Polylactide KW - Layered double hydroxides KW - Dielectric spectroscopy PY - 2015 DO - https://doi.org/10.1016/j.eurpolymj.2015.05.008 SN - 0014-3057 SN - 1873-1945 VL - 68 SP - 338 EP - 354 PB - Elsevier CY - Oxford AN - OPUS4-33257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Purohit, Purv A1 - Huacuja Sánchez, Jesús A1 - Wang, D.-Y. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Heinrich, G. A1 - Schönhals, Andreas T1 - Structure - property relationships of nanocomposites based on polypropylene and layered double hydroxides JF - Macromolecules N2 - Nanocomposites based on polypropylene (PP) and organically modified ZnAl layered double hydroxides (ZnAl-LDH) were prepared by melt blending and investigated by a combination of differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS and WAXS), and dielectric relaxation spectroscopy (DRS). An average number of stack size of LDH layers is calculated by analyzing the SAXS data which is close to that of pure organically modified ZnAl-LDH. Scanning microfocus SAXS investigations show that the ZnAl-LDH is homogeneously distributed in the PP matrix as stacks of 4–5 layers with an intercalated morphology. DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 40% LDH where the crystallization of PP is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion dodecylbenzenesulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polypropylene matrix which is otherwise dielectrically invisible (low dipole moment). As a main result, it is found that the glass transition temperature in this interfacial region is by 30 K lower than that of pure polypropylene. This is accompanied by a drastic change of the fragility parameter deduced from the relaxation map. KW - Nanocomposites KW - Layered double hydroxide KW - Dielectric spectroscopy KW - X-ray scattering KW - Polypropylene PY - 2011 DO - https://doi.org/10.1021/ma200323k SN - 0024-9297 SN - 1520-5835 VL - 44 IS - 11 SP - 4342 EP - 4354 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -