TY - CONF A1 - Lay, Vera A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Hofmann, Detlef A1 - Sturm, Patrick A1 - Stamm, Michael A1 - Niederleithinger, Ernst T1 - Multi-sensory monitoring and ultrasound for quality assurance at underground sealing structures T2 - Proceedings of the International Conference on Non-destructive Evaluation of Concrete in Nuclear Applications N2 - Within the safety concepts of underground disposal sites of nuclear waste, engineered barriers play an important role. As these sealing structures have high demands concerning integrity, we aim at advancing the available construction materials, monitoring, and inspection techniques within the project SealWasteSafe. A specifically developed alkali-activated material is compared to classical salt concrete. A comprehensive multi-sensory monitoring scheme is used at 150-340 l specimens to monitor setting and hardening of both materials. All sensors are demonstrated to resist the highly alkaline environments. Besides cabled and wireless temperature and humidity of the materials, strain variations using fibre optic sensors and acoustic emissions are recorded over periods of at least 28 days, partly for more than eight months. After hardening of the specimens, further nondestructive evaluations using ultrasonic echo and thermographic measurements are conducted. Preliminary results proof the suitability of the tested sensors and clearly highlight differences between the tested materials. Particularly, the newly developed alkali-activated material shows lower acoustic emission activity indicating less cracking activity. Additionally, unique ultrasonic methods will enable better images of potential internal objects and cracks at in-situ sealing structures. A largescale ultrasonic system is optimised to reliably detect objects at a depth exceeding 9 m while still obtaining a good resolution. Modelling studies show the potential of further increasing the distance between individual transducer arrays. Additionally, a new ultrasonic borehole probe using phased arrays allowing for beam focussing is constructed and tested. Laboratory measurements at a halfcylindrical concrete specimen coincide well with the previous modelling. In total, the presented safe materials, detailed monitoring approaches and ultrasonic quality assurance methods will help to obtain safe sealing structures within salt as a host rock. The concepts can partly be transferred to sealing structures in alternative host rocks and will also be valuable for non-nuclear waste repositories. T2 - NDE NucCon CY - Espoo, Finland DA - 25.01.2023 KW - SealWasteSafe KW - Engineered barriers KW - Monitoring KW - Embedded sensors KW - Ultrasonic imaging PY - 2023 SP - 2 EP - 10 AN - OPUS4-56928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Chaudhuri, Somsubhro A1 - Osterbrink, Lars A1 - Driebe, Thomas A1 - Hein, Daniel T1 - Semi-automated detection of rain erosion damages on turbine blades with passive thermography and AI image processing N2 - The European Green Deal and the global fight against climate change call for more and larger wind turbines in Europe and around the world. To meet the increasing demand for maintenance and inspection, partly autonomous methods of remote inspection are increasingly being developed in addition to industrial climbers performing the inspection. Rotor blades are exposed to extreme weather conditions throughout their lifetime of 20 years, and the leading edge erodes over time. These erosion damages change the aerodynamic features of blades and can cause structural damages. The estimated annual energy production (AEP) losses caused by erosion damages are between 0.5% and 2% per year. The classification of the severity of a rain erosion damage and the quantification of the resulting AEP losses for cost efficient repair and maintenance efforts and improved power production of wind turbines are subject of scientific research. For the inspection of wind turbine rotor blades, passive thermography is an option that has been used to detect both internal damage [3, 4] as well as erosion on the surface [5, 6]. The advantage is that, given suitable boundary conditions, not only the rain erosion damage itself but also temperature differences caused by the resulting turbulences can be observed on the surface of the blade. Turbulences reduce the efficiency of the rotor blades and result in AEP losses. Optimised thermography inspections can contribute to detect and to evaluate rain erosion damages. The thermal inspection lasts 10 minutes per turbine and is performed while the turbine is in full operation, avoiding downtime and lost opportunities for the turbine owner which are usually caused by conventional blade inspections. The timely inspection procedure is complemented by an automatic data evaluation and results in a considerable number of inspected wind turbines in a certain period of time. A fully convolutional network (FCN) is implemented for the automated evaluation of thermal images. In the presented study, more than 1000 thermographic images of blades were annotated, augmented and used to train and test the FCN. The aim is the precise marking of thermal signatures caused by erosion damage at the leading edge. The area size of the detected temperature difference caused by turbulences was used to identify and categorise damages. Certain strategies were adopted to group small individual indications as one large damage, in order to develop simplification rules based on realistic thermal imaging resolution. T2 - Wind Energy Science Conference (WESC) 2023 CY - Glasgow, Scotland DA - 23.05.2023 KW - Non-destructive testing KW - Thermography KW - Wind turbine blade PY - 2023 AN - OPUS4-58498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Ghafafian, Carineh A1 - Krankenhagen, Rainer A1 - Trappe, Volker T1 - In situ characterisation of GFRP shell structures of wind turbine rotor blades under test using lock-in thermography N2 - The work shown demonstrates the possibility of measuring the load distribution of complex components such as rotor blades in cyclic tests using thermography. This is confirmed in the experiments presented by comparison with DIC measurements. The advantage of thermography is that it does not require any treatment of the test specimens in the setup shown and the measurement procedure can in principle be scaled to large components. In addition, compared to other imaging methods, the actual loads and not the deformation are measured. With a suitable data evaluation by means of Lockin analysis, small loads can be verified in a formative manner. Using the example of model repairs in shell test specimens made of sandwich glass fibre composite material, it is shown that inhomogeneous load distribution due to internal structures can be detected using thermography. T2 - WindEurope Annual Event 2023 CY - Copenhagen, Denmark DA - 25.04.2023 KW - Thermography KW - TSA PY - 2023 AN - OPUS4-58500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael T1 - Infrared Thermography of wind turbine rotor blades: 3 use cases N2 - Thermography is a widely accepted non-invasive measurement method and is generally used in various areas of the life cycle of infrastructure and machinery. This includes design, production and maintenance. Thermography is particularly suitable for remote inspection of large areas that are difficult to reach. In this presentation, applications of thermography in the field of wind energy will be shown, touching on three explicit examples from rotor blade inspection. Experimental testing and validation: Thermography can measure and visualise the stress distribution on the surface during cyclic tests of rotor blades and rotor blade sections. The so-called thermoelastic stress analysis makes use of special evaluation algorithms (Lockin analysis) of the measurement data and the cyclic loading of components. An advantage of the measurement methods compared to other measurement methods such as strain gauges or digital image correlation is that it does not require any extra treatment or sensoring of the components. In the work shown here, repair methods are optimised and evaluated in cyclic tests on shell test specimens. Operation and maintenance: Rotor blades can be inspected from the ground during operation using passive thermography. Here, the integration of weather forecasts and conditions as input for simulations is crucial and will be demonstrated with some examples from the field. The goal of the ongoing research is to obtain detailed insights into the internal structure of the inspected rotor blades with individual measurements. A specially developed automated measuring system is able to measure a wind turbine (one-sided) within 5 minutes without impacting its operation. Environmental impact: In cases where less strict time and economic constraints apply than in the maintenance of rotor blades in operation, thermography can also be used to realise other inspection processes that take more time. Examples of this are quality control or the characterisation of rotor blades during dismantling. In the latter case, for example, it can be crucial to know which components such as foam, balsa, belt and spar are present in which parts of the blade when dismantling the rotor blades. Long-term measurements (~1-2 h) under suitable weather conditions can provide good insights into the inner structure of the rotor blades, both during disassembly and during quality control before installation. For this purpose, the sun is used as a heat source, which induces a thermal response of the rotor blades. The thermal behaviour of the rotor blades then allows conclusions to be drawn about the internal structure. T2 - EERA DeepWind conference 2023 CY - Trondheim, Norway DA - 18.01.2023 KW - Thermography KW - Wind turbine blade KW - Inspection PY - 2023 AN - OPUS4-58501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer T1 - Weather-dependent passive thermography of unheated wind turbine blades T2 - Proceedings, Thermosense: Thermal Infrared Applications XLIV N2 - Up to now, the inspection of wind turbines with industrial climbers has been considered ”state of the art”. However, ever-larger wind turbines and advancing digitization make modern and automated inspection methods indispensable. Passive thermography can serve as such a digital and atomized method while it is well known for its applications in the inspection of buildings or electrical circuits. However, its application relies on thermal gradients in the inspected object such that a temperature contrast exists between damaged and sound areas. This also holds for unheated structures like rotor blades of wind turbines which show no intrinsic temperature gradient and can hardly be heated. Under certain weather conditions with sufficient solar loading and diurnal temperature variations, passive thermography is suitable for the in-service inspection of rotor blades. However, for a reliable use of passive thermography on ”thermal passive” components, the incorporation of these environmental conditions in the planning and evaluation of thermal inspections is crucial. Additionally, the complex inner structure of wind turbine blades in comparison to other objects and buildings require a specific method referencing the individual rotor blades to each other. This allows the distinction between the thermal response of design-specific structural features and damages or irregularities between the three blades. We show thermal signatures of damage in rotor blades and contrast them with structural characteristics by comparing the three blades. In addition to measurements in industrial environments, laboratory measurements are shown and compared to simulations. The long-term goal is to simulate the influence of different weather parameters and thus gain a better understanding of measurements in the field. The results shown here can be seen as one step towards industrial application. T2 - SPIE Defense + Commercial Sensing CY - Orlando, Florida, USA DA - 03.04.2022 KW - Passive thermography KW - Wind energy KW - FEM simulations PY - 2022 DO - https://doi.org/10.1117/12.2618740 VL - 12109 SP - 1 EP - 8 PB - Society of Photo-Optical Instrumentation Engineers (SPIE) AN - OPUS4-54943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer T1 - Weather-dependent passive thermography of unheated wind turbine blades N2 - Up to now, the inspection of wind turbines with industrial climbers has been considered ”state of the art”. However, ever-larger wind turbines and advancing digitization make modern and automated inspection methods indispensable. Passive thermography can serve as such a digital and atomized method while it is well known for its applications in the inspection of buildings or electrical circuits. However, its application relies on thermal gradients in the inspected object such that a temperature contrast exists between damaged and sound areas. This also holds for unheated structures like rotor blades of wind turbines which show no intrinsic temperature gradient and can hardly be heated. Under certain weather conditions with sufficient solar loading and diurnal temperature variations, passive thermography is suitable for the in-service inspection of rotor blades. However, for a reliable use of passive thermography on ”thermal passive” components, the incorporation of these environmental conditions in the planning and evaluation of thermal inspections is crucial. Additionally, the complex inner structure of wind turbine blades in comparison to other objects and buildings require a specific method referencing the individual rotor blades to each other. This allows the distinction between the thermal response of design-specific structural features and damages or irregularities between the three blades. We show thermal signatures of damage in rotor blades and contrast them with structural characteristics by comparing the three blades. In addition to measurements in industrial environments, laboratory measurements are shown and compared to simulations. The long-term goal is to simulate the influence of different weather parameters and thus gain a better understanding of measurements in the field. The results shown here can be seen as one step towards industrial application. T2 - Defense + Commercial Sensing 2022 CY - Orlando, Florida, USA DA - 3.4.2022 KW - Passive thermography KW - Wind energy KW - FEM simulations PY - 2022 UR - https://spie.org/defense-commercial-sensing/presentation/Weather-dependent-passive-thermography-of-unheated-wind-turbine-blades/12109-19?SSO=1 AN - OPUS4-54944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer T1 - Towards automated passive thermography of wind turbine blades N2 - Up to now, the inspection of wind turbines by industrial climbers has been considered "state of the art". However, many aspects like ever-larger wind turbines, minimizing the risk for man and machine and the advancing digitalization make modern and automated inspection methods indispensable. A particular interest here is contactless and remote methods that can be used with drones instead of climbing robots. The work presented here contributes to the long-term goal of making autonomous and advanced inspections of wind turbine rotor blades using drones ready for industrial use. Besides visual inspection, only a few inspection methods are capable of non-contact inspection on an industrial scale. Passive thermography can serve as such a contactless and digital inspection method and is well known for its applications in the inspection of buildings or electrical circuits. It can even sense both near-surface and subsurface defects. The sensitivity to subsurface defects makes one advantage of thermography over visual inspections. As a digital inspection method, it is generally also more objective and offers more comparability. For example, defects and their extent can be easily monitored and compared over time. However, its industrial application relies on thermal gradients in the inspected object such that a temperature contrast exists between damaged and sound areas. This also applies to large unheated structures such as wind turbine rotor blades, which do not have an intrinsic temperature gradient and at the same time cannot be easily heated externally. Under certain weather conditions, a change of the environmental temperature or the solar loading conditions can provide the necessary thermal gradients to make passive thermography viable for the in-service inspection of rotor blades. For a reliable use of passive thermography on "thermal passive" components, the incorporation of these environmental conditions in the planning and evaluation of thermal inspections is crucial. Compared to many other objects and buildings, wind turbine blades have varying and often unknown complex internal structures depending on the model. A special method is therefore required, that can be used independently of the internal structure of the blades and that relates the individual thermograms of the three rotor blades to each other. This allows the distinction between the thermal response of design-specific structural features and damages or irregularities between the three blades. In this work we present thermal signatures of rotating in-service rotor blades taken under industrial relevant conditions. These thermograms show surface and subsurface damages and irregularities which we contrast with structural design features by referencing the three blades to each other. In addition, we examine the strong influence of different weather conditions on the inspection results. A direct comparison of measured results with inspection reports from industrial climbers serves as a benchmark. T2 - EERA DeepWind conference CY - Trondheim, Norway DA - 19.01.2022 KW - Thermography KW - Wind energy KW - Passve IR KW - Rotor blades KW - Maintenance PY - 2022 AN - OPUS4-55818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer T1 - Towards the in-service blade inspection by ground-based passive thermography N2 - Until today, the optical inspection of rotor blades by industrial climbers is considered state of the art. However, both more and larger rotor blades and the increasing digitalization of maintenance work make modern inspection methods increasingly necessary. In this context, passive thermography can serve as a useful digital technique for in-service inspection of wind turbine blades. Unlike active thermography, this inspection method does not require an active heat source but takes advantage of heating by the sun and diurnal temperature fluctuations. This allows inspections from the ground during operation and does not require shutting down the wind turbine. However, an inspection with passive thermography is highly weather dependent. Thus, the already weak thermal signatures formed due to internal structures and possible internal damage are only strong enough under certain weather conditions. To obtain meaningful inspection results despite the relatively small thermal differences between intact and defective components, three aspects are crucial: 1. Measurements should be taken at the time of optimum weather conditions. It must be kept in mind that different internal damage will be revealed by thermal signatures under different weather conditions. 2. The thermal signature of the rotor blades, including possible damages, must be simulated with FEM simulations. In this way, the influence of different weather conditions can be predicted but also understood in the aftermath. 3. The temperature differences between identically designed and assembled rotor blades must be considered to analyze variations between blades. This work will address all these aspects and show, based on field measurements under industrial conditions (exemplarily shown in figure 1), laboratory measurements and FEM simulations, which steps must be taken to establish passive thermography as an industrial inspection method. T2 - EERA SP7 Rotor Blade workshop CY - Roskilde, Denmark DA - 23.06.2022 KW - Thermography KW - Wind energy KW - Maintenance KW - Rotor blades KW - Passive IRT PY - 2022 AN - OPUS4-55819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Ghafafian, Carineh A1 - Krankenhagen, Rainer A1 - Trappe, Volker T1 - In situ Charakterisierung von Reparaturen in GFK Schalenstrukturen mittels Lockin Thermografie und Felddehnungsmessungen N2 - Die tiefgreifende Reparatur von Faserverbundwerkstoffen stellt durch deren inneren Aufbau eine besondere Herausforderung dar, die unter anderem bei der Instandhaltung von Rotorblättern von Windkraftanlagen zum Tragen kommt. Um die Reparaturen von Rotorblattschalen zu untersuchen und zu optimieren, wurden an der BAM Sandwich-Schalenprüfkörper aus Glasfaserkunststoff (GFK) entwickelt. Nachdem in diese Schalenprüfkörper Modell-Reparaturen eingebracht wurden, werden zyklische mechanische Ermüdungsversuche bis zum Bruch durchgeführt. Vorrangiges Ziel ist es, den Einfluss verschiedener Reparaturvariablen auf die Ermüdungslebensdauer der Struktur zu verstehen, sowie die stabilste Reparaturmethode zu bestimmen. Während der zyklischen Lastversuche wurden regelmäßig in-situ Messungen mit einer Thermografie Kamera und einem optischen Felddehnungsmesssystem durchgeführt. Durch beide Messmethoden lassen sich Eigenschaften der Probekörper zeitlich und räumlich aufgelöst darstellen. Während die Felddehnungsmessungen Aufschluss über die Verformung an der Oberfläche geben, erfasst die thermische Inspektion Temperaturänderungen an der Oberfläche. Besonders die thermografischen Messwerte bilden hier das oberflächennahe Volumen ab, in dem sich Temperaturänderungen an der Oberfläche abzeichnen. Die Messergebnisse beider Systeme stellen also verschiede aber korrelierte Parameter dar. Denn die zyklische Belastung (Bewegung) ruft eine periodische Temperaturänderung im Bauteil hervor. Dieser so genannte Thermoeleastische Effekt kann durch eine Lockin-Analyse der Temperaturtransienten (Temperaturverläufe) nachgewiesen werden. Die räumliche Darstellung der thermischen Effekte lässt Rückschlüsse auf die tatsächliche Lastverteilung im Probekörpervolumen zu. Darüber hinaus führen nichtelastische Verformungen zu einer zusätzlichen Wärmefreisetzung, die durch geeignete Auswerteverfahren ebenfalls nachgewiesen werden können. Entsprechende Hot-Spots in der räumlichen Verteilung erlauben eine frühzeitige Erkennung besonders belasteter Bereiche lange vor dem eigentlichen Bauteil-Versagen. Das gestattet die Lokalisierung des Initial-Schadens, was mit der numerischen Spannungsanalyse korreliert werden kann und die Entwicklung und Bewertung verschiedener Reparaturstrategien. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Lockin Thermografie KW - GFK KW - NDT KW - ZfP PY - 2022 AN - OPUS4-55823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubhro T1 - EvalTherm - Weather-dependent passive thermography of unheated wind turbine blades N2 - Evaluation of passive Thermography for the inspection of wind turbine blades. Comparison of passive thermography from the ground with drone-supported images and active thermography. Better understand the influence of weather conditions through field measurements. Development of an inspection planning tool that incorporates weather forecasts. Use FEM simulations to predict thermal contrasts of different damages under different environmental conditions. T2 - Kolloquium CY - Saarbrücken, Germany DA - 28.09.2022 KW - Thermography KW - Wind turbine rotor blades KW - FEM PY - 2022 AN - OPUS4-56913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -