TY - JOUR A1 - Rietsch, P. A1 - Witte, F. A1 - Sobottka, S. A1 - Germer, G. A1 - Becker, A. A1 - Güttler, Arne A1 - Sarkar, B. A1 - Paulus, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Diaminodicyanoquinones: Fluorescent dyes with high dipole moments and electron-acceptor properties JF - Angewandte Chemie Int. Ed. N2 - Fluorescent dyes are applied in various fields of research,includingsolarcellsandlight-emittingdevices,andas reporters for assays and bioimaging studies.Fluorescent dyes with an added high dipole moment pave the way to nonlinear optics and polarity sensitivity.Redox activity makes it possible to switch the moleculeQsphotophysical properties.Diaminodicyanoquinone derivatives possess high dipole moments,yet only lowfluorescence quantum yields,and have therefore been neglected as fluorescent dyes.Here we investigate the fluorescencepropertiesofdiaminodicyanoquinonesusingacombined theoretical and experimental approach and derive molecules with afluorescence quantum yield exceeding 90%. The diaminodicyanoquinone core moiety provides chemical versatility and can be integrated into novel molecular architectures with unique photophysical features. KW - Dipole moment KW - Fluorescence KW - Quantum yield KW - Quinones PY - 2019 DO - https://doi.org/10.1002/anie.201903204 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 24 SP - 8235 EP - 8239 PB - Wiley Online Libary CY - Weihnheim AN - OPUS4-48890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Oliver A1 - Kalbe, Ute A1 - Meißner, K. A1 - Sobottka, S. T1 - Sorption effects interfering with the analysis of polycyclic aromatic hydrocarbons (PAH) in aqueous samples JF - Talanta N2 - Polycyclic aromatic hydrocarbons (PAH) are severe environmental pollutants that are analyzed frequently. The risk assessment of PAH impact to groundwater can be performed using leaching tests. Therby a liquid–solid separation step including centrifugation may be required, which in turn might lead to loss of analytes due to sorption on the equipment. Thus we determined the PAH recoveries from various container materials (polyethylene (PE), polypropylene (PP), polytetraflourethylene (PTFE), stainless steel (ES), and perflouroalkoxy (PFA)) and compared them to selected PAH properties. We found the best recoveries for PFA (68%) and PTFE (65%) containers. We found good negative correlations (-0.93 and better) between PAH recovery and log partition coefficient organic carbon–water (log KOC) for PFA, PTFE, and ES containers. KW - PAH recoveries KW - Sorption KW - Plastic surfaces KW - Centrifuge containers PY - 2014 DO - https://doi.org/10.1016/j.talanta.2014.01.038 SN - 0039-9140 VL - 122 SP - 151 EP - 156 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-31383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -