TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. G. T1 - Equilibrium Chemistry in BCl3–H2–Ar Plasma JF - Plasma Chemistry and Plasma Processing N2 - The approach, which was developed earlier for modeling chemical reactions in laser induced plasmas, is applied to radio-frequency discharge plasmas. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of an argon-hydrogen plasma with an Addition of boron trichloride is studied as a function of plasma temperature and mole ratio H2∕BCl3. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained earlier by means of another equilibrium model that uses ab-initio quantum chemical computations of thermochemical and kinetic data and a 0D thermochemical quilibrium solver. KW - Modeling chemical reactions KW - Plasma physics KW - Plasma enhanced chemical vapor deposition PY - 2019 DO - https://doi.org/10.1007/s11090-019-09985-6 VL - 39 IS - 4 SP - 1087 EP - 1102 PB - Springer AN - OPUS4-47817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy JF - Journal of Quantitative Spectroscopy & Radiative Transfer N2 - Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be least-square fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10 −11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1016/j.jqsrt.2017.09.018 SN - 0022-4073 SN - 1879-1352 VL - 204 SP - 190 EP - 205 PB - Elsevier AN - OPUS4-43131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Chemistry in laser‑induced plasmas at local thermodynamic equilibrium JF - Applied physics A N2 - The equation of state for plasmas containing negative and positive ions of elements and molecules formed by these elements is modeled under the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hückel theory. The hierarchy problem for constants of molecular reactions is resolved by using three different algorithms for high, medium, and low temperatures: the contraction principle, the Newton–Raphson method, and a scaled Newton–Raphson method, respectively. These algorithms are shown to have overlapping temperature ranges in which they are stable. The latter allows one to use the developed method for calculating the equation of state in combination with numerical solvers of Navier–Stokes equations to simulate laser-induced Plasmas initiated in an atmosphere and to study formation of molecules and their ions in such plasmas. The method is applicable to a general chemical network. It is illustrated with examples of Ca–Cl and C–Si–N laser-induced plasmas. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1007/s00339-018-2129-9 SN - 1432-0630 SN - 0947-8396 VL - 124 IS - 10 SP - 716, 1 EP - 21 PB - Springer AN - OPUS4-46112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy JF - Journal of quantitative spectroscopy and radiative transfer N2 - Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be leastsquare fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10−11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2017 DO - https://doi.org/10.1016/j.jqsrt.2017.09.018 SN - 0022-4073 SN - 1879-1352 VL - 204 SP - 190 EP - 205 PB - Elsevier CY - New York, NY AN - OPUS4-42287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Anions in laser-induced plasmas N2 - The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hu¨ckel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl2, CaCl, Cl2, N2, C2, Si2 , CN, SiN, SiC, and their positive and negative ions. The model is applied to laserinduced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier–Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, Cl2, Si2, C2 , CN-, SiC-, and SiN- in LIPs is investigated in detail. KW - Plasma modeling KW - Plasma KW - LIBS PY - 2016 DO - https://doi.org/10.1007/s00339-016-0175-8 VL - 2016 SP - Article Number: 676 PB - Applied Physics A, Springer AN - OPUS4-38771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Modeling chemical reactions in laser-induced plasmas JF - Applied physics A N2 - Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye–Hückel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules N2 ,C2 ,Si2 ,CN,SiN,SiC and their ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier–Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, solid silicon, or solid carbon in an ambient gas containing N2 and Ar is simulated to study formation of molecules and molecular ions. KW - Laser-induzierte Plasmaspektroskopie KW - Numerische Simulation KW - Chemische Reaktion KW - Elektronische Spektren PY - 2015 DO - https://doi.org/10.1007/s00339-015-9445-0 SN - 0947-8396 VL - 121 IS - 3 SP - 1087 EP - 1107 PB - Springer CY - Berlin AN - OPUS4-35225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Emission plasma tomography with large acceptance angle apertures relevant to laser induced plasma spectroscopy JF - Spectrochimica Acta B N2 - It is proposed to use apertures with large acceptance angles to reduce the integration time when studying the emissivity of laser induced plasmas by means of the Abel inversion method. The spatial resolution lost due to contributions of angled lines of sight to the intensity data collected along the plasma plume diameter is restored by a special numerical data processing. The procedure is meant for the laser induced plasma diagnostics and tomography when the integration time needed to achieve a reasonable signal to noise ratio exceeds a characteristic time scale of the plasma state variations which is short especially at early stages of the plasma evolution. It can also be used to improve the spatial resolution in a conventional experimental setup for plasma diagnostics. KW - Abel inversion KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1016/j.sab.2011.04.006 SN - 0584-8547 SN - 0038-6987 VL - 66 IS - 6 SP - 413 EP - 420 PB - Elsevier CY - Amsterdam AN - OPUS4-25827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Sven A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - Laser-induced plasma tomography by the Radon transform JF - Journal of analytical atomic spectrometry N2 - The Radon transform is tested as a method for reconstruction of the emissivity distribution of asymmetric laser induced plasmas. Two types of experiments were carried out. First, the plasma asymmetry is introduced via focusing the laser by a cylindrical lens to create plasma plumes elongated along the symmetry axis of the lens. Second, an asymmetric power distribution across the laser beam is created by reflecting the latter from a damaged mirror. Various effects on the quality of the plasma emissivity reconstructed by the Radon tomography method are investigated. The understanding of these effects appears to be essential to design a proper experimental setup to study LIBS plasmas by the Radon tomography method. It is demonstrated that the Radon tomography can successfully be used for experimental studies of asymmetric LIBS plasmas. KW - Radon transform KW - Laser induced plasma KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1039/c1ja10187k SN - 0267-9477 SN - 1364-5544 VL - 26 SP - 2483 EP - 2492 PB - Royal Society of Chemistry CY - London AN - OPUS4-24889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Panne, Ulrich T1 - Abel inversion applied to a transient laser induced plasma: implications from plasma modeling JF - Journal of analytical atomic spectrometry N2 - We test the effects of non-uniformity, non-transparency, and non-stationarity of a laser-induced plasma on the results obtained by the Abel inversion method. The method is commonly used for obtaining spatially resolved emissivity of axially symmetric non-homogeneous radiating objects. Besides the axial symmetry, the plasma is assumed to be optically thin. As the method addresses a certain plasma state, the plasma is required to be stationary during measurements. It is difficult to satisfy the aforementioned conditions for transient laser induced plasmas. As such the plasmas are not stationary; they have steep gradients of thermodynamic parameters that rapidly vary during the plasma evolution. Therefore, any conclusion based on time-integrated measurements and the corresponding data processing should account for these effects. In this work, we use the collision-dominated plasma model to generate time- and spatially resolved synthetic spectra. The spectra are processed by executing the Abel inversion using two numerical algorithms. Thus obtained spatially resolved plasma parameters (emissivity, temperature, and number density) are compared with the exact parameters used to set up the model. In doing so, the accuracy of the Abel inversion method is assessed. Special attention is paid to the dynamic aspect of the expanding plasma and possible errors which result from time-integrated measurements. PY - 2011 DO - https://doi.org/10.1039/c1ja10044k SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 7 SP - 1457 EP - 1465 PB - Royal Society of Chemistry CY - London AN - OPUS4-25824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -