TY - JOUR A1 - Altmann, Korinna A1 - Schulze, Rolf-Dieter A1 - Friedrich, Jörg Florian T1 - Polymer deposition morphology by electrospray deposition - Modifications through distance variation JF - Thin solid films N2 - Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. KW - Electrospray ionization KW - Electrospray deposition KW - Ultra-thin layers KW - Capillary-sample distance KW - Residual solvent PY - 2014 DO - https://doi.org/10.1016/j.tsf.2014.06.020 SN - 0040-6090 VL - 564 SP - 269 EP - 276 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-31252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dimitriev, O.P. A1 - Grytsenko, K.P. A1 - Lytvyn, P.M. A1 - Doroshenko, T.P. A1 - Briks, J.L. A1 - Tolmachev, A.I. A1 - Slominskii, Y.L. A1 - Kudinova, M.A. A1 - Schrader, S. A1 - Schulze, Rolf-Dieter A1 - Friedrich, Jörg Florian T1 - Substrate-induced self-assembly of donor-acceptor type compounds with terminal thiocarbonyl groups JF - Thin solid films N2 - Two types of conjugated thiocarbonyl-terminated compounds have been synthesized and their ability to be adsorbed on surfaces of the different nature, namely, glass, polytetrafluoroethylene (PTFE), and gold has been studied. Different morphology of the films prepared by thermal vacuum evaporation and drop-casting from solutions has been observed depending on the surface used. It has been found that gold surface has a unique property to influence self-assembly of both monolayer and larger aggregates or crystals of the compounds, in contrast to glass and PTFE substrates. It was found that thiocarbonyl group is able to be chemisorbed to the gold surface. However, it was concluded that in spite of the fact that the thiocarbonyl groups are important for the chemical interaction with the gold surface, physical adsorption on the substrate surface, compound–compound and compound–solvent (when using solution) interactions are of great significance to drive self-assembly of the final film. KW - Thiocarbonyl group KW - Donor–acceptor compound KW - Gold surface KW - Aggregation KW - Film morphology PY - 2013 DO - https://doi.org/10.1016/j.tsf.2013.05.084 SN - 0040-6090 VL - 539 SP - 127 EP - 133 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Schulze, Rolf-Dieter A1 - Hidde, Gundula A1 - Friedrich, Jörg-Florian T1 - Electrospray ionization for deposition of ultra-thin polymer layers – principle, electrophoretic effect and applications JF - Journal of Adhesion Science and Technology N2 - Nebulizing of polymer solutions, in a high-voltage field under atmospheric conditions by electrospray ionization (ESI), is a comfortable way to deposit ultra-thin layers of polar or ionic polymers onto any conductive substrate materials. The substrate is grounded and the polymer solution is sprayed through a powered capillary. The formed charged droplets shrink by solvent evaporation during their way to the grounded substrate, the charges close ranks and the droplets collapse consecutively by charge repulsion, thus forming finally charged single macromolecules. After their discharging at the grounded substrate, an ultrathin ‘quasi-monomolecular’ polymer layer is formed. It could be shown by imaging of scratches through the polymer layer by atomic force microscopy that the deposited polymer layers are dense at a thickness of about 10 nm. Carbon fibre bundles were coated with poly (allylamine) (PAAm) or poly(acrylic acid) (PAA) as potential adhesion-promoting layers in fibre–polymer composites. The polymer deposition is self-inhibiting after formation of a continuous coverage of about 200 nm for PAAm and 30 nm for PAA as result of surface charging. Continuous deposition onto such isolating layers or polymers without charging can be achieved by using current of alternating polarity. The film formation is self-healing because of the electrophoretic effect, i.e. the ion discharging occurs preferentially at noncoated areas. This electrophoretic effect of ESI was demonstrated by completely enwrapping all the carbon fibres of the roving within a distance of about 100 μm far from its outside and also at the backside of the fibre bundle with about 80% of the topside coverage, as measured by X-ray photoelectron spectroscopy and visualized using scanning electron microscopy. KW - Complete enwrapping of fibres KW - Ultra-thin polymer layers KW - Self-healing KW - Electrospray deposition KW - Carbon fibres KW - Electrophoretic effect PY - 2012 DO - https://doi.org/10.1080/01694243.2012.727170 SN - 0169-4243 VL - 27 IS - 9 SP - 988 EP - 1005 PB - Taylor & Francis CY - London AN - OPUS4-42631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -