TY - JOUR A1 - Schmid, Thomas A1 - Schäfer, N. A1 - Abou-Ras, D. T1 - Raman microspectroscopy provides access to compositional and microstructural details of polycrystalline materials JF - Spectroscopy Europe N2 - This overview article provides insight into how to apply Raman spectroscopy in combination with a confocal, optical microscope setup on polycrystalline material systems, in order to obtain quantitative information on phase distribution, grain sizes, crystal orientations and microstrain. Although the present work uses Cu(In,Ga)(S,Se)₂ absorber layers in corresponding thin-film solar cells as a model system to demonstrate the capabilities of Raman microspectroscopy, the approaches discussed may be applied to any organic or inorganic, polycrystalline materials system. KW - Raman microscopy KW - Microstructure KW - Microspectroscopic imaging KW - Polycrystalline materials PY - 2016 SN - 0966-0941 VL - 28 IS - 5 SP - 16 EP - 20 PB - Wiley AN - OPUS4-37929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schäfer, N. A1 - Wilkinson, A. J. A1 - Schmid, Thomas A1 - Winkelmann, Aimo A1 - Chahine, G. A. A1 - Schülli, T. U. A1 - Rissom, T. A1 - Marquardt, J. A1 - Schorr, S. A1 - Abou-Ras, D. T1 - Microstrain distribution mapping on CuInSe2 thin films by means of electron backscatter diffraction, X-ray diffraction, and Raman microspectroscopy JF - Ultramicroscopy N2 - The investigation of the microstructure in functional, polycrystalline thin films is an important contribution to the enhanced understanding of structure–property relationships in corresponding devices. Linear and planar defects within individual grains may affect substantially the performance of the device. These defects are closely related to strain distributions. The present work compares electron and X-ray diffraction as well as Raman microspectroscopy, which provide access to microstrain distributions within individual grains. CuInSe₂ thin films or solar cells are used as a modelsystem. High-resolution electron backscatter diffraction and X-ray microdiffraction as well as Ramanmicrospectroscopy were applied for this comparison. Consistently, microstrain values were determined of the order of 10⁻⁴ by these three techniques. However,only electron backscatter diffraction, X-ray microdiffraction exhibit sensitivities appropriate for mapping local strain changes at the submicrometer level within individual grains in polycrystalline materials. KW - Microstrain KW - Thin film KW - X-ray microdiffraction KW - EBSD KW - Raman microspectroscopy PY - 2016 DO - https://doi.org/10.1016/j.ultramic.2016.07.001 SN - 0304-3991 SN - 1879-2723 VL - 169 SP - 89 EP - 97 PB - Elsevier B.V. AN - OPUS4-37453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Schäfer, N. A1 - Levcenko, S. A1 - Rissom, T. A1 - Abou-Ras, D. T1 - Orientation-distribution mapping of polycrystalline materials by Raman microspectroscopy JF - Scientific reports N2 - Raman microspectroscopy provides the means to obtain local orientations on polycrystalline materials at the submicrometer level. The present work demonstrates how orientation-distribution maps composed of Raman intensity distributions can be acquired on large areas of several hundreds of square micrometers. A polycrystalline CuInSe2 thin film was used as a model system. The orientation distributions are evidenced by corresponding measurements using electron backscatter diffraction (EBSD) on the same identical specimen positions. The quantitative, local orientation information obtained by means of EBSD was used to calculate the theoretical Raman intensities for specific grain orientations, which agree well with the experimental values. The presented approach establishes new horizons for Raman microspectroscopy as a tool for quantitative, microstructural analysis at submicrometer resolution. PY - 2015 DO - https://doi.org/10.1038/srep18410 SN - 2045-2322 VL - 5 SP - Article 18410, 1 EP - 7 PB - Nature Publishing Group CY - London AN - OPUS4-35224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -