TY - CONF A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Schubert, Thomas A1 - Hille, Falk A1 - Hüsken, Götz A1 - Beckmann, Birgit A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Rogge, Andreas T1 - Investigation of multiple impact-damaged reinforced concrete structures as a reference for liquid penetration behavior and tomographic studies N2 - The structural integrity of outer reinforced concrete (RC) containments of nuclear power plants provides an essential shield against external hazards. If this containment is damaged by an impact event, such as an aircraft crash, the question arises to which degree the reinforced concrete containment still has its protective capability. This concerns both purely structural protection and protection against liquids penetrating the interior of the containment. Due to the dimensions of the containment structures, it is difficult to perform real scale impact experiments, so in the past decades plate geometries at medium scale have been used for investigations. Detailed investigations on the structural behaviour of RC members or RC plates subjected to impact loading have already been presented in Just et al., Hering, Hering et al., Bracklow et al., Hille et al. and Nerger et al. The following investigations deal with the single and multiple impact event (first hard impact and/or subsequent soft impact) on a RC specimen, which provides the basis for further investigations. A description of the test setup and the test procedure as well as a presentation of the test results from the impact tests are provided. Furthermore, the experimental program is presented, which the damaged RC specimens are to undergo to deal with the question of how much the impact-damaged RC structure has become permeable to liquid media, such as water and kerosene, depending on the intensity of the impact. The aim of these following investigations is to develop a test setup that can be applied to investigate the liquid penetration behaviour (LPB) of small, medium, and large-scale RC members. In addition to the liquid penetration experiments, the damaged specimens are to be examined by planar tomography to obtain the damage inside the specimen. The combination of damaging event, fluid penetration behaviour and tomography should enable a comprehensive understanding of the damage to the RC specimen. T2 - Conference: 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT) CY - Yokohama, Japan DA - 04.03.2024 KW - Drop tower KW - Hard impact KW - Soft impact KW - Multiple impact PY - 2024 SP - 1 EP - 10 PB - IASMiRT CY - Yokohama, Japan AN - OPUS4-59723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Post-impact evaluation at RC plates with planar tomography and FEM N2 - Due to the wide range of applications, the easy production and the large field of use, reinforced concrete (RC) is a widespread building material. This variety of applications is reflected in a wide range of physical material properties. Not only therefor it still is a technical challenge to provide all necessary test conditions for experimentally reproducing dynamic effects under impact loading of RC structures. In this paper we present investigations on the thicknesses of RC plates under low and medium high velocity impact loading by a flat-tipped impactor. The planar tomography setup at BAM is used to visualize the impact damage and to characterize the damage features such as cracks, scabbing and spalling. Further, the comparison of tomography results with those of an applied numeric simulation analysis is used to verify the numeric models for future damage prognosis under impact loading. Using the results of both, the tomographic as well as the FE analysis, different damage features were investigated and compared regarding their validity. Crack damage plays a leading part and the significance of summarized crack values as well as their distribution is analyzed. The total damage value but also the determined damage distribution both provide an input for describing damage as a function of the impactor velocity and plate thickness. KW - Reinforced concrete structure KW - Post-impact evaluation KW - Damage characterization KW - Ansys Autodyn KW - Drucker-Prager KW - Planar tomography PY - 2020 U6 - https://doi.org/10.1016/j.matpr.2020.05.671 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-51115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard T1 - Crack detection in reinforced concrete N2 - Automatic segmentation of cracks using crack detection methods fails when applied on concrete with embedded reinforcements; it results in artifacts called false-detected cracks. We present a two-step approach to trace the cracks which reduces significantly detecting the false ones. In the first step, the reinforcements were found and removed from the 3D data set, and in the second step, the cracks were detected in the 3D data set free from reinforcements. To visualize and determine the structure and the degree of damages nondestructively, planar tomography as a special case of laminography was used. KW - 3D imaging KW - Laminography KW - Crack detection KW - Reinforced concrete PY - 2020 U6 - https://doi.org/10.1016/j.ndteint.2019.102190 VL - 109 SP - 102190 PB - Elsevier Ltd. AN - OPUS4-49520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Improved tomographic investigation for impact damage characterization N2 - Reinforced concrete (RC) is used as structural material in most diverse civil engineering applications. For the variability of its physical properties it is still an engineering challenge to meet all necessary requirements for the prediction of dynamic effects under impact loading. In this paper, investigations are shown within the scope of quantifying and evaluating the damage caused by an impact. The experimental investigations are performed in the field of low- and medium-velocity impact. The chosen flat nose shape results in small penetrations on the top side and scabbing on the bottom side. The plate is scanned with an adapted planar tomographic examination after the impact, and the damage is analysed, afterwards. Cracks and spalling are made visible with a reconstruction. The numerical model validated on the tomographic results justifies the application for further predictions of the damage description. T2 - 25th International Conference on Structural Mechanics in Reactor Technology - SMIRT25 CY - Charlotte, NC, USA DA - 04.08.2019 KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2019 SP - Paper Div 5 S8, 1 EP - 9 AN - OPUS4-49541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Nerger, Deborah A1 - Hille, Falk A1 - Kühn, T. A1 - Hering, M. T1 - Damage investigations of concrete under impact load using laminography N2 - We examine the behavior of reinforced concrete components subjected to impact induced loading conditions which might be caused by vessels collisions such as aircraft fuel tanks The concrete plates were impact damaged at TU Dresden and shipped to BAM At BAM laminar tomography as the imaging method is used to determine and quantify the damage state An automatic crack detection method based on template matching is applied to find the cracks and we aim to develop a new method using machine learning Algorithms In addition numerical models are developed to understand the experiment and to predict the damage structures based on failure mechanisms. T2 - DCMS Summer School MATERIALS 4.0 CY - Dresden, Germany DA - 10.09.2018 KW - Laminography KW - Crack detection KW - Reinforced concrete KW - 3D imaging PY - 2018 AN - OPUS4-48637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Redmer, Bernhard A1 - Ewert, Uwe A1 - Walter, David A1 - Wieder, Frank A1 - Hohendorf, Stefan A1 - Grunwald, Marcel T1 - Mobile Tomographic X-Ray Inspection N2 - A special 3D tomographic algorithm was developed for mobile inspection of large objects. The method is based on a coplanar movement of an X-ray tube parallel to the surface of a digital detector array (DDA). Two different designs were developed and applied for 3D testing of welded pipes in nuclear power plants and large aircraft components made from carbon fiber reinforced polymers (CFRP). The reconstructed tomo-graphic images permit the detection, characterization and measurement of the dimensions of flaws with en-hanced sensitivity compared to conventional radiography and UT. T2 - Far East NDT New Technology & Application Forum 2017 CY - Xi'an, Shaanxi province, China DA - 22.06.2017 KW - Computed tomography KW - Laminography KW - Weld inspection KW - Fibre composites KW - Aircrafts PY - 2017 AN - OPUS4-41055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Redmer, Bernhard A1 - Ewert, Uwe A1 - Zscherpel, Uwe T1 - Recent Developments in Digital Industrial Radiography N2 - The lecture includes the following topics: - Computed Radiography with Phosphor Imaging Plates is gaining more and more importance for mobile inspection and Film Replacement. - New High Definition CR (HD CR) systems allow the CR application for Weld and Casting inspection with low energy X-rays. - New calibration methods enable the High Contrast Sensitivity Technology (HCS RT) for radiographic inspection. The contrast sensitivity can be enhanced by a factor of 10 in comparison to film. - New Digital Detector Arrays (DDA) are now available for stationary and mobile testing. They are also applied for automated defect recognition (ADR), CT, Back Scatter and Dual Energy Applications. - Back Scatter Techniques are increasingly applied for Security and NDT - Numeric Radiographic Modelling is applied for Experiment Planning, Film replacement, POD-calculations and training - Mobile and portable CT devices are suitable for non-destructive cross sectioning in nuclear power industry and aircraft applications. - Neutron radiography at research reactors was enhanced for visualisation of motions. T2 - Instituts-Kolloquium der Werkstoffwissenschaften an der TU Ilmenau und DGZfP AK Thüringen, 223. Sitzung CY - Ilmenau, Germany DA - 25.02.2016 KW - 3D-Rekonstruktion KW - Radiographie KW - Computer-Tomographie KW - Detektoren PY - 2016 AN - OPUS4-37987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Redmer, Bernhard A1 - Tschaikner, Martin A1 - Hohendorf, Stefan A1 - Ewert, Uwe A1 - Deresch, A. A1 - Bellon, Carsten T1 - 3D- X-Ray high Energy Testing of Large Objects with Specialized Manipulation Trajectories N2 - High-energy radiography is traditionally used for the detection of defects in thick-walled, bulky components. It is also used for testing the integrity of components for civil and security-related applications, e.g. containers. The combination of high-energy sources with digital detector arrays or line cameras allows carrying out the tests either in a shorter time compared to film technique, or with higher contrast sensitivity. The high-energy X-ray laboratory "HEXYLab" at BAM is a joint laboratory in which future users, manufacturers and scientists collaborate to initiate and develop joint development projects. The new universal manipulation system “HEXYTech” provides the engineering and technical base for meeting different requirements within HEXYLab. Different types of trajectories for tube, object and detector can be programmed with a total of 13 rotational and linear axes. In particular, large objects with complex geometries can be examined. Measurements can be acquired as 2D images via standard radiography as well as 3D volumes from laminography or computed tomography reconstructions. The general rules for the application of high-energy radiography with digital detectors (imaging plates, digital detector arrays) were determined within the framework of the European project "HEDRad" (High Energy Digital Radiography) and added to the standard DIN EN ISO 17636-2. The paper gives an overview of the test technique and introduces several applications on the basis of experiments and reconstructed 3D- images. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Rekonstruktion KW - Hochenergie-Radiograohie KW - Computer-Tomografie KW - Laminographie KW - große Objekte KW - High-energy radiography KW - Digital detectors KW - Computed laminography KW - Thick-walled test objects KW - 3D-reconstruction PY - 2016 AN - OPUS4-37991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krug, Sonja A1 - Hohendorf, Stefan A1 - Redmer, Bernhard T1 - Radiographien in der Kunstbibliothek N2 - Im Rahmen des Basisprojektes »Sammlungserschließung« wurden im Oktober 2014 Radiographien von 14 Gemälden und zwei Schmuckrahmen aus der Sammlung Modebild – Lipperheidesche Kostümbibliothek (Kunstbibliothek, Staatliche Museen zu Berlin) erzeugt. Die Aufnahmen wurden von Anja Schönstedt, Bernhard Redmer und Stefan Hohendorf von der Bundesanstalt für Materialforschung und -prüfung (BAM, Fachbereich 8.3 Radiologische Verfahren) angefertigt und uns zur weiteren Bearbeitung bereitgestellt. PY - 2015 VL - 100 SP - 5 EP - 7 AN - OPUS4-33113 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Hohendorf, Stefan A1 - Redmer, Bernhard A1 - Ewert, Uwe T1 - Mobile high-energy X-ray radiography for nondestructive testing of cargo containers N2 - Radiologic evaluation techniques are nondestructive testing (NDT) used to detect the bulk of explosives and contraband materials in large objects. As compared to conventional low-energy (<450 key) X-ray imaging, high-energy (>1 MeV) digital X-ray radiography is required for the NOT of large containers because of the need for high penetration through thick materials, sensitivity, and the ability to distinguish between low-and high-Z materials. Mobile, high-energy, and high-resolution radiologic techniques are useful to detect contraband and threat materials in digital radiographic images of containers with complex packing. This paper presents a mobile, high-energy X-ray radiographic technique for the in-field nondestructive inspection of cargo containers. The developed experimental technique consisted of a betatron as a high-energy (7.5 MeV) X-ray source and a high-resolution (400 mu m) matrix detector for the digital X-ray imaging. In order to evaluate the detection efficiency and image quality of the measurement technique, a test specimen was proposed that was made of a 3 mm thick steel container with an inner dimension of 60 x 30 x 40 cm(3) comprising different low-and high-Z materials. Image quality indicators were used to assess the essential image quality parameters such as image basic spatial resolution, effective attenuation coefficient, and signal-to-noise ratio (SNR). Experimental investigations were performed on a 6.1 m sea freight container with mockup dangerous materials in complex packing. Preliminary experimental results showed that the proposed technique was able to distinguish between liquids and solids, as well as detect contraband materials. Furthermore, a remarkable SNR of 400 was achieved in the measured digital X-ray images. The influence of temperature on X-ray radiation dose rate at different X-ray energies was also investigated. Finally, important applications of the proposed technique in the context of maritime security are discussed. KW - Nondestructive testing KW - NDT KW - Digital radiography KW - High-energy X-ray imaging KW - Betatron KW - Digital detector arrays KW - Container inspection KW - Contraband detection KW - Image quality KW - SNR PY - 2015 SN - 0025-5327 VL - 73 IS - 2 SP - 175 EP - 185 PB - Society for Nondestructive Testing CY - Columbus, Ohio AN - OPUS4-32521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -