TY - CONF A1 - Krüger, Y. A1 - Meckler, A. N. A1 - Loland, M. A1 - Day, C. C. A1 - Müller, Bernd R. A1 - Kupsch, Andreas T1 - Fluid inclusion microthermometry in stalagmites: The next stage of development N2 - Fluid inclusion microthermometry is one of the analytical approaches that has been proposed for speleothem-based temperature reconstructions. The proxy of this paleothermometer is the density of drip water relicts that have been enclosed in microscopic fluid inclusions during speleothem growth. Prior to microthermometric analyses, the monophase liquid inclusions need to be transferred from a metastable liquid into a stable liquid-vapour two-phase state by stimulating vapour bubble nucleation by means of single ultra-short laser pulses. Subsequent microthermometric analyses determine the temperature at which the vapour bubble disappears again, the so-called liquid-vapour homogenisation temperature (Th(obs) ). The observed homogenisation temperature depends not only on the water density but also on the inclusion volume. In order to determine the water density, a thermodynamic model is used that takes account of the effect of surface tension on Th(obs) to calculate Th∞. This is the corresponding homogenisation temperature at saturation pressure that determines the water density and defines the formation temperature of the fluid inclusion. The analytical precision of the method ranges between 0.1 and 0.3 °C depending on the size of the inclusions. T2 - Climate Change: The Karst Record IX (KR9) CY - Innsbruck, Austria DA - 17.07.2022 KW - Fluid inclusion microthermometry KW - Stalagmites KW - Synchrotron radiation KW - X-ray imaging KW - X-ray diffraction PY - 2022 AN - OPUS4-55344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -