TY - JOUR A1 - Mix, Renate A1 - Friedrich, Jörg Florian A1 - Neubert, Dietmar A1 - Inagaki, N. T1 - Response of linear, branched or crosslinked polyethylene structures on the attack of oxygen plasma JF - Plasma chemistry and plasma processing N2 - Linear, branched and crosslinked polyethylenes (PE) were exposed to the low-pressure oxygen plasma for 2–120 s. In the following the samples were washed with solvents to remove low-molecular weight oxidized material and to excavate the subjacent polymer structure for microscopic characterization. X-ray photoelectron spectroscopy (XPS) measurements provided information about changes in elemental composition and chemical structure of PE after plasma exposure and washing. The calculation of the concentration of tertiary C atoms using XPS data was a measure of branches and crosslinking in the polymer before and after exposure to oxygen plasma. Linear PE was most sensitive towards oxygen plasma and showed the highest concentration in tertiary C atoms after plasma exposure. On the other hand branched PE types, which possess originally more tertiary carbon atoms, have lost two-third of them after 2 s oxygen plasma exposure. Branched PE show also topological changes at their surface as detected by atomic force microscopy. Differential scanning calorimetry measurements confirmed strong changes in crystallinity and molecular orientation of linear PE already after 120 s exposure to the oxygen plasma interpreted as amorphization. These effects should be interpreted as result of crosslinking caused by the recombination of dangling bond sites. KW - Linear and branched polyethylene KW - Oxygen plasma KW - Functionalization KW - Crosslinking PY - 2014 UR - http://link.springer.com/article/10.1007%2Fs11090-014-9558-9/fulltext.html DO - https://doi.org/10.1007/s11090-014-9558-9 SN - 0272-4324 VL - 34 IS - 5 SP - 1199 EP - 1218 PB - Plenum Publ. Corp. CY - New York, NY, USA AN - OPUS4-30741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mix, Renate A1 - Friedrich, Jörg Florian A1 - Inagaki, N. ED - Thomas, M. ED - Mittal, K.L. T1 - Permanence of functional groups at polyolefin surfaces introduced by dielectric barrier discharge pretreatment in presence of aerosols T2 - Atmospheric pressure plasma treatment of polymers N2 - A convenient way to overcome the chemical inertness of polyolefin surfaces is to expose them to the atmospheric air plasma of a dielectric barrier discharge (DBD). To improve the efficiency in formation of polar groups at the polyolefin surface, different liquids such as water and ethanol were sprayed as aerosol into the plasma zone between the powered electrode and the polyolefin surface. Both sprayed liquids as well as the polyolefin surface were simultaneously activated; thus, the formation of different functional groups at the polyolefin surface was realized. The type of aerosol-sprayed additive, exposure time, power etc. have been found to determine the efficiency with respect to introduction of polar groups. KW - PE KW - PP KW - Surface modification KW - Aerosol-assisted DBD PY - 2013 SN - 978-1-118-59621-0 DO - https://doi.org/10.1002/9781118747308.ch4 N1 - Serientitel: Adhesion and Adhesives: Fundamental and applied aspects – Series title: Adhesion and Adhesives: Fundamental and applied aspects IS - Part 1 / Chapter 4 SP - 131 EP - 156 PB - Wiley AN - OPUS4-28657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -