TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium JF - Applied Surface Science N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Ehrke, Roman ED - Silva Gomes, J. F. ED - Meguid, S. A. T1 - A study on tribological behaviour of a-C:H coatings under lubricated conditions up to 250°C T2 - Proceedings of the 6th International Conference on Mechanics and Materials in Design N2 - The influence of temperature and counterbody material on the tribological properties of a-C:H coatings deposited on Cronidur 30 steel has been investigated in a lubricated ball on disk contact situation with alpha-alumina and silicon nitride as counterbodies. The results show, that the wear volumes of the systems increase exponentially with increasing temperature, for alpha-alumina more than for silicon nitride. Two different wear mechanisms seem to have a major influence: First, the abrasive action due to materials hardness and second, the tribo-oxidation when silicon nitride is counter material. T2 - 6th International Conference on Mechanics and Materials Design CY - P. Delgada/Azores, Portugal DA - 26.07.2015 KW - Diamond like carbon KW - Ceramics KW - Wear KW - Friction KW - Temperature PY - 2015 SP - Paper 5395, 445 EP - 446 AN - OPUS4-37014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A.P. A1 - Wäsche, Rolf A1 - Hartelt, Manfred T1 - Friction and wear studies of polyetherimide composites under oscillating sliding condition against steel cylinder JF - Polymer composites N2 - Tribological properties of neat polyetherimide (PEI), glass, carbon fiber, and solid lubricants filled PEI composites are presented in this article. The aim of this study was to investigate the friction and wear properties of these composites under dry oscillating sliding condition at room temperature (RT) as well as at elevated temperature (120 °C). The polymer specimens were made to oscillate against steel cylinder as a counterpart. The friction and wear properties of PEI and composites were strongly influenced by the temperature. Incorporation of carbon fiber in the PEI matrix has increased the wear rate at RT, while at elevated temperature this trend was opposite. Abrasive action of carbon fibers has severely damaged the counterpart and resulted in accelerated wear of the composite at RT. Solid lubricants filled (PTFE, MoS2, graphite) along with glass fiber is beneficial in improving the friction and wear performance of the PEI composite at RT, whereas at elevated temperature wear performance was deteriorated. Tribological performance of neat PEI and glass fiber composite was similar with each other at RT. Scanning electron micrographs and optical micrographs of the worn polymer specimens and the steel cylinders was used to study the possible wear mechanisms. The present test results were also compared with data available on the reciprocating wear of PEI and composites in the literature and trends have been reported. PY - 2015 DO - https://doi.org/10.1002/pc.23559 SN - 0272-8397 SN - 1548-0569 VL - 38 IS - 1 SP - 48 EP - 60 PB - Society of Plastics Engineers CY - Manchester, NH AN - OPUS4-34921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel JF - Applied surface science N2 - Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Metals PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.08.111 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 21 EP - 27 PB - North-Holland CY - Amsterdam AN - OPUS4-32861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartelt, Manfred A1 - Wäsche, Rolf A1 - Hodoroaba, Vasile-Dan T1 - Verschleißpartikel-Analyse mit Rasterelektronenmikroskopie und energiedispersiver Röntgenspektrometrie im Transmissionsmodus (TSEM/EDX) JF - Tribologie und Schmierungstechnik N2 - Untersucht wurden Verschleißpartikel als elektronentransparente Proben auf dünnen Trägerfolien mit einem hochauflösendem Rasterelektronenmikroskop und energiedispersiver Röntgenspektrometrie im Transmissionsmodus. Die hohe laterale Auflösung dieser modernen Methoden ermöglicht eine morphologische Charakterisierung der Verschleißpartikel bis in den nm-Bereich. Die hochauflösende Elementanalyse erlaubt eine Interpretation der Zusammensetzung und damit Rückschlüsse auf die Verschleißpartikelbildung. Die tribologischen Untersuchungen sind an einem Modell-Verschleißtribometer nach DIN 51834-2 geschmiert, aber ohne Ölkreislauf, durchgeführt worden. Die Präparation der Verschleißpartikel über eine Entnahme und Übertragung einer geringen Schmierstoffmenge mit einer Mikropipette auf eine TEM-Trägerfolie ist mit einem geringen Aufwand möglich. Der präparative Aufwand ist relativ gering. Das benötigte Schmierstoffvolumen beträgt wenige Mikroliter (0,001 ml). Die Untersuchung zeigt die geringe geometrische Größe der Verschleißpartikel und bestätigt indirekt die These der Reaktionsschichtbildung mit einer geringen Schichtdicke, die ständig verschleißt und sich stetig neu bildet. Die beschriebenen Verschleißprozesse sind in der Modell-Verschleiß-Prüfung mit sehr hohen Pressungen am Versuchsbeginn nachweisbar. KW - Modellverschleißprüfung KW - Verschleißpartikel-Analyse KW - TSEM PY - 2015 SN - 0724-3472 VL - 62 IS - 6 SP - 5 EP - 11 PB - Expert Verlag CY - Renningen AN - OPUS4-35043 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Ehrke, Roman ED - Silva Gomes, J.F. ED - Meguid, S.A. T1 - A study on tribological behaviour of a-C:H coatings under lubricated conditions up to 250 °C T2 - M2D2015 - 6th International conference on mechanics and materials in design (Proceedings) N2 - The influence of temperature and counterbody material on the tribological properties of a-C:H coatings deposited on Cronidur 30 steel has been investigated in a lubricated ball on disk contact situation. The results show, that the wear volumes of the system increase exponentially with increasing temperature. Two different wear mechanisms seem to have a major influence: First, the abrasive action due to materials hardness and second, the tribooxidation when silicon nitride is counter material. T2 - M2D2015 - 6th International conference on mechanics and materials in design CY - Ponta Delgada, Azores DA - 26.07.2015 KW - Diamond like carbon KW - Ceramics KW - Wear KW - Friction KW - Temperature PY - 2015 SN - 978-989-98832-3-9 SP - 445 EP - 446 AN - OPUS4-33808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Hodoroaba, Vasile-Dan T1 - Analysis of nanoscale wear particles from lubricated steel-steel contacts JF - Tribology letters N2 - A new method for sampling wear particles directly from the lubricant reservoir has been developed and applied successfully for analyzing wear particles by high-resolution scanning electron microscopy in transmission mode having coupled energy-dispersive X-ray spectroscopy. The lubricated tribological testing was carried out with fully formulated as well as with non-formulated synthetic base oil. It was possible to analyze individual particles with dimensions as small as about 5–30 nm which are likely the 'primary' wear particles. A majority of the particles, however, are agglomerated and, thus, lead to the formation of larger agglomerates of up to a few micrometers. Chemical analysis led to the conclusion that most of the observed particles generated in formulated oil, especially the larger ones, are composed of the additives of the lubricant oil. In non-formulated base oil, the primary particles are of similar dimensions but contain only iron, chromium and oxygen, but most likely stem from the mating materials. This finding points to the fact that the main wear mechanism under lubricated conditions with fully formulated oil is more like a continuous shearing process rather than a catastrophic failure with the generation of larger primary particles. When the oil is non-formulated, however, several wear mechanisms act simultaneously and the wear rate is increased significantly. Generated larger primary particles are milled down to the nanoscale. When the oil is fully formulated, wear mainly takes places at the additive layer or tribofilm; thus, the steel surface is protected. KW - Particle KW - Wear particle analysis KW - Lubricated contact KW - Bearing steel KW - Nanoscale T-SEM KW - Nanoscale EDX analysis PY - 2015 DO - https://doi.org/10.1007/s11249-015-0534-1 SN - 1023-8883 SN - 1573-2711 VL - 58 IS - 3 SP - 49-1 - 49-10 PB - Springer Science Business Media B.V. CY - Dordrecht AN - OPUS4-33525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A.P. A1 - Wäsche, Rolf A1 - Hartelt, Manfred T1 - Tribological studies on polyetherketone composite under reciprocating sliding condition against steel cylinder JF - Proceedings of the institution of mechanical engineers - Part J, Journal of engineering tribology N2 - Tribological studies on neat polyetherketone (PEK) and glass fiber reinforced PEK composite were carried out at room and elevated temperature (120 °C). The objective of this study was to characterize for friction and wear properties under dry reciprocating sliding condition at different experimental conditions. The polymer specimens were made to oscillate against steel cylinder as a counterpart. This kind of contact condition are frequently found in bushes, sliding bearing, electronic parts, seals, etc. The friction and wear behavior of neat PEK and composite was quite different at room temperature and elevated temperature. It was observed that glass fiber reinforcement is beneficial in controlling the wear of PEK matrix at room temperature than at elevated temperature. The test results are discussed by considering the surface properties i.e. material removal and film transfer formation. Scanning electron micrographs and optical micrographs of the worn polymer and steel cylinder was used to study the wear mechanisms. KW - Dry oscillating sliding KW - Polyetherketone composite KW - Wear mechanism KW - Contact geometry PY - 2015 DO - https://doi.org/10.1177/1350650115570403 SN - 1350-6501 VL - 229 IS - 7 SP - 795 EP - 806 PB - Institution of Mechanical Engineers CY - London AN - OPUS4-33526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Hartelt, Manfred A1 - Wäsche, Rolf T1 - High resolution imaging of macroscopic wear scars in the initial stage JF - Wear N2 - The topography of wear scars on the surface of a steel disc coated with a diamond-like carbon (DLC) layer has been investigated with an Atomic Force Microscope (AFM). AFM topography images have been combined together taking advantage of the stitching technique for the study of wear scars in their initial stage. Moreover, the topography of the sample has been acquired before and after the sliding tests. In this way even very small changes of the sample surface (<10 nm) can be detected. Three main phenomena taking place at the very initial stage of wear could be identified: the abrasion of small asperities bulging out of the sample surface, the carving of swallow grooves with depth under 20 nm, and the partial or total closure of cavities present on the surface. This last phenomenon shows that, before the carving of a wear scar, the plastic deformation of particular regions of the sample, i.e. the volume around the cavities, takes place already after few cycles (in this case between 400 and 800) in the initial phase of the sliding test. KW - Atomic force microscopy KW - Stitching technique KW - Running in KW - Plastic deformation PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.07.013 SN - 0043-1648 VL - 338-339 SP - 372 EP - 378 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wäsche, Rolf A1 - Hartelt, Manfred ED - Mang, T. T1 - Fretting T2 - Encyclopedia of lubricants and lubrication N2 - The importance of lubricants in virtually all fields of the engineering industry is reflected by an increasing scientific research of the basic principles. Energy efficiency and material saving are just two core objectives of the employment of high-tech lubricants. The encyclopedia presents a comprehensive overview of the current state of knowledge in the realm of lubrication. All the aspects of fundamental data, underlying concepts and use cases, as well as theoretical research and last but not least terminology are covered in hundreds of essays and definitions, authored by experts in their respective fields, from industry and academic institutes. KW - Fretting corrosion KW - Fretting fatigue KW - Fretting regimes KW - Fretting wear KW - Mixed fretting regime PY - 2014 SN - 978-3-642-22646-5 SN - 978-3-642-22647-2 DO - https://doi.org/10.1007/978-3-642-22647-2 VL - 2 SP - 680 EP - 687 PB - Springer CY - Heidelberg AN - OPUS4-30497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -