TY - JOUR A1 - Thünemann, Andreas A1 - Gruber, Alexandra A1 - Klinger, Daniel T1 - Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure N2 - Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the “fuzzy” surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner–Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45–5.83 nm. KW - Polymer KW - Nanoparticle KW - SAXS PY - 2020 U6 - https://doi.org/10.1021/acs.langmuir.0c01812 VL - 36 IS - 37 SP - 10979 EP - 10988 PB - American Chemical Society AN - OPUS4-51302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -