TY - JOUR A1 - Fini, E. H. A1 - Poulikakos, L. A1 - de Claville Christiansen, J. A1 - Schmidt, Wolfram A1 - Parast, M. M. T1 - Toward sustainability in the built environment: An integrative approach JF - Resources, Conservation & Recycling N2 - The built environment significantly impacts the health of individuals and populations in various ways. The health and durability of the built environment are intertwined with availability ofnaturally occurring and man-made resources and their supply chains. Therefore, resource con­ servation is a key to ensure sustainability of built environments. Many industrial wastes can be turned into valuable resources for reuse in construction of the built environment. For instance, biowaste (woody/ leafy biomass and animal waste) have been used to make construction adhesives (Fini et al., 2011), some urban wastes have been used in road construction (Poulikakos et al., 2017; Schmidt et al., 2021), end of life plastics and polymers have made their way to roadway construction, bio-oils and algae harvested from wastewater treatment plants has been used to make antiaging for outdoor building elements to mitigate UV aging (Kabir et al., 2021); sulfur has been used as an extender in asphalt and recycled mineral powders such as silica and alumina have been used to increase strength and durability against acidic compounds (Fini et al., 2019). These are just a few examples of recycling venues with beneficial uses in the built environment. The construction and operation of the built environment and the traffic that it attracts or facilitates significantly contribute to the emis­ sion of greenhouse gasses (GHG) and cause air pollution. The direct and indirect impacts of GHG and air pollutants on the environment and so­ cieties have been weil established. The built environment can be used as a powerful platform not only for recycling and resource conservation but also to remove near-ground gaseous contaminants. This can be done via tailored design and engineering of adsorptive construction materials via recycling of waste materials. For instance, advanced sorbent systems can be made for removing C02, H2S, and formaldehyde from air. This re­ quires tailored sorbent design, topology optimization, and catalytic conversion of collected gaseous compounds to name a few. This special issue covers innovative materials, methods, and man­ agement practices which aim to simultaneously address durability ofthe built environment, air quality, resource conservation, and supply chain resilience. Such innovative materials, methods, and management prac­ tices will transform the built environment into not only an active contributor to no waste, no pollution for healthy environment, but also a medium that converts the waste and pollution into beneficial products for use in the built environment, thereby promoting resource conser­ vation. Followings are examples of topics that the special issue is interested in: • Venuses to advance resource conservation specifically via novel ap­ proaches in the built environment. • Innovative construction materials for passive or active adsorption of harmful gaseous emissions to conserve air, energy, and water. • Advanced materials, methods, and management practices to pro­ mote well-being of the built environment. • Smart buildings to promote resource conservation. • Research convergence in the built environment for zero waste, zero pollution economy. KW - Impacts KW - Resource PY - 2021 DO - https://doi.org/10.1016/j.resconrec.2021.105676 VL - 172 SP - 1 EP - 2 PB - Elsevier AN - OPUS4-58402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -