TY - JOUR A1 - Fedorova, E.A. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Asanova, T.I. A1 - La Fontaine, Camille A1 - Roudenko, olga A1 - Gerasimov, E.Y. A1 - Vasilchenko, D A1 - Korenev, S.V. T1 - Time-resolved study of thermal decomposition process of (NH4)(2) PtCl6 : Intermediates and Pt nucleation JF - Vacuum N2 - Evolution in crystal, electronic and local atomic structures of Pt in ammonium hexachloroplatinate in the course of thermal decomposition in inert and reducing atmospheres have been studied by Powder X-Ray Diffraction (PXRD) and Quick X-ray Absorption Fine Structure (QXAFS) at Pt L3-edge for deeper understanding the thermally-induced solid state reaction and the formation of metallic nanoparticles. A three-step thermal decomposition mechanism of (NH4)2[PtCl6] in the inert atmosphere with the intermediate products Pt(NH3)2Cl2 and PtCl2 has been found instead one-[G.Meyer, A.Möller, J. Less. Common. Met. 170 (1991) 327–331] and two-step one [Q.Kong, F.Baudelet, J.Han, S.Chagnot, L.Barthe, J.Headspith, R. Goldsbrough, F.E.Picca, O.Spalla, Sci. Rep. 2 (2012) 1018–1025] considered early. In the reducing atmosphere, the thermal decomposition is a two-step process with the formation of the intermediate PtCl2. The best approach to determining the number of thermal decomposition steps turned out to be the express-analysis of QXAFS spectra offered in the papers, based on the simultaneous presentation of the most important parameters extracted from X-ray Absorption Near Edge Structure (XANES) and Fourier transformed Extended XAFS (EXAFS). This express-analysis was tested by comparison with results of various approaches such as conventional EXAFS fitting, linear combination fit (LCF), Multivariate Curve Resolution Alternating Least Squares method (MCR ALS). KW - Platinum KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110590 VL - 194 SP - 110590 PB - Elsevier AN - OPUS4-54008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -