TY - JOUR A1 - Fernandez-Menendez, L. J. A1 - Mendez-Lopez, C. A1 - Abad Andrade, Carlos Enrique A1 - Fandino, J. A1 - Gonzalez-Gago, C. A1 - Pisonero, J. A1 - Bordel, N. T1 - A critical evaluation of the chlorine quantification method based on molecular emission detection in LIBS JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The entire process involving the determination of Cl by molecular emission detection in Laser-Induced Breakdown Spectroscopy (LIBS) is thoroughly studied in this paper. This critical evaluation considers how spectra are normalized, how interferences from other molecular species signals are removed, and how signal integration is applied. Moreover, a data treatment protocol is proposed to achieve reliable and accurate Cl determination from the CaCl molecular spectral signal, not requiring the use of more complex numerical approaches. Calcium chloride dihydrate (CaCl2⋅2H2O) and high purity anhydrite samples (CaSO4) are used to optimize the acquisition conditions and data treatment of CaCl emission signal. Using the developed protocol, calibration curves for Cl, covering the concentration range from 0 μg/g to 60,000 μg/g of Cl, are successfully achieved. Finally, the suitability of the proposed methodology for Cl determination is successfully applied in industrial gypsum waste samples, where the results obtained by LIBS are validated using high-resolution molecular absorption spectroscopy (HR-CS-MAS) and potentiometric titration. KW - Laser induced breakdown Spectrocopy (LIBS) KW - Molecular spectra KW - Chlorine determination KW - CaCl emission bands KW - Industrial gypsum PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544292 DO - https://doi.org/10.1016/j.sab.2022.106390 SN - 0584-8547 VL - 190 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-54429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Fandino, J. A1 - Nordlien, J. H A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Quarles, C. D. A1 - Gonzalez, J. A1 - Jakubowski, Norbert A1 - Bordel, N. T1 - Improving the analytical performance of pulsed-GD-SFMS for multi-elemental depth profile analysis of heat-treated Zn coatings on extruded aluminium JF - Journal of Analytical Atomic Spectrometry N2 - The formation of diffusion layers on Zn layers deposited on Al substrates is mainly used to prevent corrosion effects. Evaluation of the influence exerted by different coating methodologies and heat treatments on the formation of these diffusion layers is of great interest for the aluminium industry. Particularly, multi-elemental in-depth distributions of major, minor and trace elements in Zn-coatings is highly demanded before and after heat treatments. A fast characterization of these materials require a direct solid analytical technique able to provide high sensitivity and high depth resolution. For this purpose, an improved analytical method based on the use of pulsed glow discharge sector field mass spectrometry (pulsed-GD-SFMS) is investigated. Glow discharge operating parameters (e.g. pulse duration, pulse frequency), glow discharge source design (e.g. flow tube lengths), and SFMS mass spectra acquisition conditions (e.g. integration time) are evaluated to achieve low sputtering rates, high mass spectra acquisition rates and improved depth resolution. At the optimize conditions Zn coatings deposited by arc-spray and electrodeposition are analysed before and after heat treatments to evaluate the diffusion of different key elements. Moreover, results are validated using femtosecond laser ablation (fs-LA)-ICP-MS, which provides additional information about the heterogeneous distribution of some elements in the Zn coatings. KW - GDMS KW - Pulsed-GD-SFMS KW - Depht profiling KW - Zn KW - Aluminium PY - 2019 DO - https://doi.org/10.1039/c9ja00189a VL - 34 IS - 11 SP - 2252 EP - 2260 PB - Royal Society of Chemistry CY - London AN - OPUS4-49451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -