TY - CHAP A1 - Jordan, T. A1 - Askar, Enis A1 - Holtappels, Kai A1 - Jopen, M. A1 - Stoll, U. A1 - Reinecke, E.-A. A1 - Krause, U. A1 - Beyer, M. A1 - Markus, D. T1 - Fuels – Introduction | Hydrogen safety T2 - Reference Module in Chemistry, Molecular Sciences and Chemical Engineering N2 - The introduction of hydrogen as a safe energy carrier needs a robust knowledge base, tools for the design and safety assessment of hydrogen technologies built on it, and an internationally harmonized set of standards and regulations. Many of the innovative technologies imply hydrogen at high pressures and/or cryogenic temperatures, with which private users come into contact for the first time in distributed applications. In order to avoid over-conservative, expensive safety solutions, while at the same time demonstrating the usability and safety of hydrogen applications and maintaining acceptance for the technology, safety research must also keep pace with, or better yet anticipate, trends in technological development. Thus, this overview article describes not only the current state of knowledge and technology regarding hydrogen safety, but also its further development. KW - Explosion protection KW - Accidental scenarios KW - Hazard and risk assessment KW - Regulations codes and standards (RCS) KW - Ignition KW - Hydrogen storage KW - Energy carrier PY - 2024 SN - 978-0-1240-9547-2 DO - https://doi.org/10.1016/B978-0-323-96022-9.00195-X VL - 2nd Edition SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beyer, M. A1 - Grätz, Rainer T1 - Internationale Normen für explosionsgeschützte mechanische Geräte – ISO 80079-36 und -37 N2 - Die beiden Normen ISO 80079-36 (Nichtelektrische Geräte für den Einsatz in explosionsfähigen Atmosphären - Grundlagen und Anforderungen) und ISO 80079-37 (Nichtelektrische Geräte für den Einsatz in explosionsfähigen Atmosphären - Schutz durch konstruktive Sicherheit "c", Zündquellenüberwachung "b", Flüssigkeitskapselung "k") beschreiben die Anforderungen an explosionsgeschützte mechanische Geräte. Die Normen ersetzen die Teile 1, 5, 6, und 8 der Normenreihe DIN EN 13463. Wesentliche Unterschiede und Gemeinsamkeiten zu den Vorgängernormen werden hier erläutert. ISO 80079, Teil 36 und 37 sind Teil einer Normenreihe für nichtelektrische Geräte und Schutzsysteme (ISO/IEC 80079), die gemeinsam mit den Normen für explosionsgeschützte elektrische Geräte (Normenreihe IEC 60079) ein integriertes internationales technisches Regelwerk für den Explosionsschutz bildet. Dies wird mittel- bis langfristig den globalen Marktzugang, insbesondere für die exportorientierten deutschen Hersteller, erleichtern. Zu den gerade erschienenen Normen der Reihe ISO/IEC 80079 wurden parallel zum Normungsprozess die Grundlagen erarbeitet, um sie analog zu den elektrischen Geräten in das IECEx System einzubinden. Die Möglichkeiten zur Anwendung der beiden Normen bei der Konformitätsbewertung im Rahmen der ATEX Richtlinie und des IECEx Systems werden diskutiert. T2 - 14. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Berlin, Germany DA - 14.06.2016 KW - Explosionsschutz KW - Explosionsgeschützte mechanische Geräte KW - ATEX Richtlinie 2014/34/EU KW - IECEx-System KW - ISO 80079-36/37 PY - 2016 DO - https://doi.org/10.7795/510.20161124 AN - OPUS4-37470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beyer, M. A1 - Grätz, Rainer T1 - Internationale Normen für explosionsgeschützte mechanische Geräte – ISO 80079-36 und -37 T2 - 14. Kolloquium zur chemischen und physikalischen Sicherheitstechnik N2 - Die beiden Normen ISO 80079-36 (Nichtelektrische Geräte für den Einsatz in explosionsfähigen Atmosphären - Grundlagen und Anforderungen) und ISO 80079-37 (Nichtelektrische Geräte für den Einsatz in explosionsfähigen Atmosphären - Schutz durch konstruktive Sicherheit "c", Zündquellenüberwachung "b", Flüssigkeitskapselung "k") beschreiben die Anforderungen an explosi-onsgeschützte mechanische Geräte. Die Normen ersetzen die Teile 1, 5, 6, und 8 der Normenreihe DIN EN 13463. Wesentliche Unterschiede und Gemeinsamkeiten zu den Vorgängernormen werden hier erläutert. ISO 80079, Teil 36 und 37 sind Teil einer Normenreihe für nichtelektrische Geräte und Schutzsysteme (ISO/IEC 80079), die gemeinsam mit den Normen für ex-plosionsgeschützte elektrische Geräte (Normenreihe IEC 60079) ein integriertes internationales technisches Regelwerk für den Explosionsschutz bildet. Dies wird mittel- bis langfristig den globalen Marktzugang, insbesondere für die exportorientierten deutschen Hersteller, erleichtern. Zu den gerade erschienenen Normen der Reihe ISO/IEC 80079 wurden parallel zum Normungsprozess die Grundlagen erarbeitet, um sie analog zu den elektrischen Geräten in das IECEx System einzubinden. Die Möglichkeiten zur Anwendung der beiden Normen bei der Konformitätsbewertung im Rahmen der ATEX Richtlinie und des IECEx Systems werden diskutiert. T2 - 14. Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Berlin, Germany DA - 14.06.2016 KW - Explosionsschutz KW - Explosionsgeschützte mechanische Geräte KW - ATEX Richtlinie 2014/34/EU KW - IECEx-System KW - ISO 80079-36/37 PY - 2016 SN - 978-3-9817853-5-7 SN - 0938-5533 SP - 45 EP - 53 CY - Berlin AN - OPUS4-37472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welzel, F. A1 - Grunewald, Thomas A1 - Beyer, M. A1 - Grätz, Rainer T1 - Mechanisch erzeugte Reib- und Schlagfunken im Vergleich JF - PTB-Mitteilungen N2 - Die funkenerzeugenden Prozesse der Reib- und Schlagfunken konnten über gezielte Betrachtungen und einen schmalen Bereich der Parameterbreite der jeweiligen Zündquelle verglichen werden. So zeigten Versuche bei einem Volumenanteil von c ≤ 10 % H2 und somit sehr kurzen Reibzeiten (t < 1,0 s) ähnliche Ergebnisse bezüglich der Funkenentstehung sowie der Zündwahrscheinlichkeiten. Durch die unterschiedlichen funkenerzeugenden Mechanismen werden Schlagfunken jedoch schneller und bei geringeren Schlagenergien bzw. bei deutlich geringeren Leistungsdichten erzeugt. In Wasserstoff/Luft-Atmosphären bis 10 % H2 sinkt mit geringer werdendem Wasserstoffanteil sowohl bei Kurzzeit-Reib- als auch bei Schlagvorgängen die Zündwahrscheinlichkeit. Bei Konzentrationen über 10 % H2 steigt nur bei Reibschlagvorgängen die Zündwahrscheinlichkeit. Dies liegt an der Zunahme des Einflusses der heißen Oberfläche bei gleichzeitig sinkender Oxidationsmöglichkeit der heißen Partikel durch die hohe Wärmeleitfähigkeit von Wasserstoff bedingt durch den verminderten Sauerstoffgehalt im Gemisch. Temperaturmessungen bestätigen trotz der verkürzten Reibzeit Temperaturen von über 400 °C, die zur Entstehung von Funken aus unlegiertem, ferritischem Stahl notwendig sind. Eine sinnvolle und praxisgerechte Bewertung der Zündwahrscheinlichkeiten erscheint für Schlagfunken über das Energiekriterium und für Reibfunken über das Leistungskriterium möglich. PY - 2011 SN - 0030-834X VL - 121 IS - 1 SP - 41 EP - 46 PB - Wirtschaftsverl. NW CY - Bremerhaven AN - OPUS4-23766 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -