TY - CONF A1 - Rethmeier, Michael A1 - Gook, Sergej A1 - Gumenyuk, Andrey ED - Turichin, G. T1 - Prospects of application of laser-GMA hybrid welding for manufacturing of large diameter longitudinal welded high strength steel pipes T2 - VII. International scientific and technical conference 'Beam technologies & laser application' CY - Saint-Petersburg, Russia DA - 2012-09-18 KW - High strength steel KW - Laser hybrid welding KW - Modified spray arc KW - Longitudinal weld KW - Pipeline PY - 2013 SP - 130 EP - 140 PB - Publishing house SPbSPU AN - OPUS4-28040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schempp, Philipp A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Tang, Z. A1 - Seefeld, T. A1 - Cross, C.E. ED - Babu, S. S. ED - Bhadeshia, H.K. ED - Cross, C.E. ED - David, S.A. ED - DebRoy, T. ED - DuPont, J.N. ED - Koseki, T. ED - Liu, S. T1 - Influence of alloy and solidification parameters on grain refinement in aluminium weld metal due to inoculation N2 - Refinement of the weld metal grain structure can improve the mechanical properties of the weld and decrease the susceptibility to solidification cracking of the weld metal. In this study, commercial Al Ti5B1 grain refiner was used to refine the microstructure of LB (laser beam) and GTA (gas tungsten arc) aluminum welds by inoculation. The grain refiner additions led to a significant decrease in the weld metal mean grain size whereby a transition from columnar to equiaxed grain structure (Columnar to Equiaxed Transition, CET) was observed. The development of both grain size and shape depended upon the base metal (Al alloys 1050A, 5083 and 6082) and upon the welding process. The GTA welding process allowed a more pronounced and a more efficient refinement than in LB welds. Furthermore, the influence of the solidification conditions on the CET was investigated through temperature measurements in the weld metal. The temperature profiles revealed a faster solidification of LB welds than in GTA welds. The results from the temperature measurements were also used to estimate (according to an existing model) the critical thermal gradient at which the CET occurs. T2 - 9th International conference on trends in welding research CY - Chicago, Illinois, USA DA - 04.06.2012 KW - Aluminium KW - LBW KW - GTAW KW - Grain refinement KW - Alloy 1050A KW - Alloy 5083 KW - Alloy 6082 KW - Al Ti5B1 PY - 2013 SN - 978-1-62708-998-2 SP - 98 EP - 107 PB - ASM international AN - OPUS4-27907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - Zoch, H.-W. ED - Lübben, T. T1 - Influences on the result quality of numerical calculation of welding-induced distortion N2 - The present investigations cover different relevant influences on the numerical calculation of welding-induced distortion. Therefore, a single-layer pulsed gas metal arc (GMA) weld of structural Steel S355J2+N with a thickness Öf5 mm is experimentally and numerically investigated. The influences of mesh density, tack-welds, and continuous cooling transformation (CCT) diagrams on welding-induced distortion are studied. The quality and quantity of These effects are clarified based on the used experimental and numerical set up. The occurring differences between the investigated cases achieve significant values. Consequently, prediction of welding-induced distortion can be improved considering the present investigations. T2 - IDE 2011 - 3rd International conference on distortion engineering 2011 CY - Bremen, Germany DA - 14.09.2011 KW - Welding simulation KW - Welding-induced distortion KW - Mesh analysis KW - Tack welding KW - Continuous cooling transformation behaviour PY - 2011 SN - 978-3-88722-724-1 SP - 277 EP - 285 AN - OPUS4-24363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shcheglov, Pavel A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. A1 - Rethmeier, Michael T1 - Experimental investigation of the laser-plume interaction during high power fiber laser welding N2 - The effect of the well-known plasma absorption and refraction in CO2-laser metal welding plumes is in case of high power solid state laser welding negligibly small. By contrast, the diffraction effects of shorter wavelength laser radiation are considerable. According to the results of preliminary studies, the fine condensed metal particles in the welding plume can lead to essential worsening of the laser beam quality. This work is devoted to the investigation of the lasermatter interaction during up to 20 kW ytterbium fiber laser welding of thick mild steel plates. The plume attenuation of a probe 1.3 µm wavelength diode laser beam as well as of continuous radiation in 250-600 nm wavelength range was measured during welding with and without Ar shielding gas supply. The measured results allow it to calculate average size and concentration of fine condensed metal particles in different plume areas using the multi-wavelength method and the Mie scattering theory. The plume temperature, which determines the condensation conditions, was measured by means of Fe I atom spectral line emission registration. The obtained results can be also of interest for remote metal treatment with high-power fiber or disc lasers. T2 - 30th ICALEO - International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 2011-10-23 PY - 2011 SN - 978-0-912035-94-9 SP - Paper 1606, 637 EP - 645 AN - OPUS4-24921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Subaric-Leitis, Andreas A1 - Brauser, Stephan A1 - Ullner, Christian A1 - Rethmeier, Michael ED - Grellmann, W. T1 - Bestimmung lokaler Spannungs-Dehnung-Kurven an Widerstandspunktschweißverbindungen von hochfesten Mehrphasenstählen mittels instrumentierter Eindringprüfung N2 - Die lokalen Festigkeiten im Bereich einer Schweißverbindung sind maßgebend für deren Widerstandsfähigkeit gegenüber mechanischen Beanspruchungen. Im Gegensatz zu anderen präparationsaufwendigen Methoden, z. B. die Untersuchung von Mikro-Zugproben, liefert die instrumentierte Eindringprüfung mit deutlich geringerem Aufwand Verläufe von Festigkeiten mit sehr guter Ortsauflösung. Es werden wahre Spannungs-Dehnungs-Kurven aus zyklischen Eindringversuchen mittels Auswertungen auf der Basis repräsentativer Spannungen und Dehnungen und auf der Basis neuronaler Netze an Punktschweißverbindungen zweier hochfester Stähle, eines TRIP-Stahls und eines martensitischen Stahls, sowie eines weichen niedrig legierten Stahls bestimmt, jeweils im Bereich des Grundwerkstoffs und der Schweißlinse. N2 - The local strength properties in the region of weld joints are essential for their resistance to mechanical stress. In contrast to an alternative method of determining the local stress strain behaviour i.e. the preparation intensive, destructive micro tensile test the instrumented indentation test provides gradients of strength properties with excellent local resolution. Two methods of determining true stress strain curves from cyclic indentation test have been used in Order to investigate the strength behaviour in the region of resistance spot welded joints of two high strength steels, a TRIP steel, and a martensitic Steel and on the other hand a mild steel. T2 - DVM-Tagung Werkstoffprüfung 2011 - Neue Entwicklungen in der Werkstoffprüfung - Herausforderungen an die Kennwertermittlung CY - Berlin, Germany DA - 01.12.2011 KW - Lokale Festigkeit KW - Spannungsdehnungskurve KW - Instrumentierte Eindringprüfung KW - Punktschweißverbindung KW - Locally resolved strength KW - Flow curve KW - Instrumented indentation test KW - Spot weld PY - 2011 SN - 978-3-9814516-1-0 SN - 1861-8154 N1 - Serientitel: DVM-Bericht – Series title: DVM-Bericht IS - 643 SP - 343 EP - 348 AN - OPUS4-24978 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Gook, S. T1 - Laser-hybrid welding for pipe production and pipe laying of thick large diameter pipes T2 - IIW 2013 - 7th Asia Pacific IIW International congress 2013 CY - Singapore DA - 2013-07-08 PY - 2013 SP - 417 EP - 423 AN - OPUS4-28935 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Gook, Sergej ED - Michailov, V. ED - Ossenbrink, R. ED - Doynov, N. T1 - High power laser beam welding T2 - International symposium welding technology - Processes, materials, simulation CY - Senftenberg, Germany DA - 2013-11-06 KW - High strength steel KW - Laser hybrid welding KW - Orbital welding KW - Modified spray arc KW - Longitudinal weld KW - Pipeline PY - 2013 SN - 978-3-8440-2319-0 SN - 1867-4887 N1 - Serientitel: Berichte des Lehrstuhls Füge- und Schweißtechnik der BTU Cottbus – Series title: Berichte des Lehrstuhls Füge- und Schweißtechnik der BTU Cottbus VL - 4 SP - 25 EP - 41 PB - Shaker Verlag GmbH AN - OPUS4-29594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thater, Raphael A1 - Perret, William A1 - Schwenk, Christopher A1 - Alber, U. A1 - Rethmeier, Michael T1 - Industrial application of welding temperature field and distortion visualization using FEA N2 - The non-uniform heat input during the welding process leads to problematic permanent deformations of welded parts. The control of these welding distortions is, with the absence of the knowledge of the fundamental mechanisms responsible for these deformations, an extremely time and cost consuming iterative “trial-and-error” optimization process. The visualization of the involved physical phenomena, like temperature and distortions, .is an indispensable tool to clearly identify these mechanisms in order to adapt the welding parameters and clamping conditions target-oriented. Both experimental and virtual methods exist to obtain these physical data, however the possibilities to visualize them with experimental methods are laborious, expensive and limited in their application. Welding Simulation using finite element analysis (FEA) offers many benefits and has a great potential to reduce the experimental effort. Nevertheless, the industrial application of welding Simulation is not yet established widely because of reservations regarding the computation costs and the resulting accuracy for instance. In this paper, the results of a case study for a welding Simulation with an industrial background are presented. A welded assembly from the automotive industry has been investigated with numerical and experimental methods. A comparison between both methods demonstrates the Potentials of welding Simulation in terms of visualization. Furthermore, the numerical results reveal the possibilities of current resources. regarding calculation time and result accuracy of an industrial applied welding Simulation. T2 - VISUAL-JW 2010 - The international symposium on visualization in joining & welding science through advanced measurements and simulation CY - Osaka, Japan DA - 11.11.2010 KW - Numerical welding simulation KW - Temperature field KW - Distortion KW - Industrial application KW - Automotive assembly PY - 2010 VL - 1 IS - PT-31 SP - 245 EP - 246 AN - OPUS4-22721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwenk, Christopher A1 - Tikhomirov, D. A1 - Eßer, G. A1 - Rethmeier, Michael T1 - General standard for welding simulation N2 - For differentiating the applicability of various numerical welding Simulation methods as well as unifying the prerequisites and the Steps to be taken in Simulation, normative codes are required for the user. Since any standard-like documents are currently still lacking in this field, DIN German Institute for Standardization has set up the Standards Committee NA 092-00-29-AA "Welding Simulation" dealing with the preparation of respective documents. This committee was initiated in partnership with the joint committee FA 12 "Weld Simulation on Application" of the Research Association of DVS German Welding Society. The objective of this Standardization work in the field of numerical welding Simulation is to prepare a DIN SPEC with a view to standardizing the approaches to the Simulation of various welding phenomena and processes over the long run. In a draft version of DIN SPEC 32534 that has already been prepared by the above mentioned Committee, the structure of the primary document was stated. The primary document specifies the application fields and the key terms of welding Simulation. In addition, the generally valid Simulation structure has been established which is intended to serve as a recommendation for customers and suppliers in formulating and handling a Service order as well as for persons who Start doing welding Simulation for the first time. This article focuses on the presentation of the new DIN SPEC 32534-1 explaining the major Simulation Steps. It additionally addresses the Classification of the secondary documents depending on the welding process and on the desired Simulation result. Finally, it gives an overview of the other subject areas dealt with in the Standards Committee NA 092-00-29-AA "Welding Simulation" as well as of the international activities in this field. T2 - IIW SC-Auto Intermediate Meeting CY - Ijmuiden, The Netherlands DA - 11.04.2011 KW - Welding simulation KW - Standardization KW - Applicability KW - Execution KW - Result display PY - 2011 IS - SC-Auto-44-11 SP - 1 EP - 10 AN - OPUS4-23519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminium N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of a stationary magnetic field during partial penetration high power laser beam keyhole welding of thick aluminum parts. COMSOL Multiphysics was used to calculate the three-dimensional heat transfer, fluid dynamics and electromagnetic field equations. Thermo-capillary (Marangoni) convection at the upper weld pool surface, natural convection due to gravity and latent heat of solid-liquid phase transition were taken into account. It shows that the application of steady magnetic fields produces a braking Lorentz force in the melt based on the Hartmann effect. The flow pattern in the weld pool and also the temperature distribution and associated weld pool geometry thus change significantly. Convective flows in the melt can effectively be suppressed and the influence of thermo-capillary flow is diminished to a thin surface layer. T2 - COMSOL Conference 2012 CY - Milan, Italy DA - 10.10.2012 KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni convection KW - Buoyancy PY - 2012 SN - 978-0-9839688-7-0 SP - 1 EP - 7 AN - OPUS4-26993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -