TY - JOUR A1 - Schartel, Bernhard A1 - Wendorff, J. H. T1 - Molecular composites for molecular reinforcement: A promising concept between success and failure JF - Polymer engineering & science N2 - The basic principles of molecular reinforcement and especially the specific approaches to obtain homogeneous composites with molecularly dispersed rigid rods are focused on and discussed. Brief overviews and successful examples of the available data covering the main characteristics are summarized. KW - Verbundwerkstoffe KW - Molecular Reinforcement KW - Homogene Mischbarkeit PY - 1999 SN - 0032-3888 SN - 1548-2634 VL - 39 IS - 1 SP - 128 EP - 151 PB - Wiley CY - Hoboken, NY AN - OPUS4-731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Hennecke, Manfred A1 - Kettner, A. A1 - Wendorff, J. H. T1 - On the thermal behaviour and thermo-oxidative stability of liquid crystalline triphenylene compounds JF - Advanced materials for optics and electronics N2 - Columnar discotic materials are considered for applications in the area of photoconductivity and light-emitting diodes. A major requirement is their stability at elevated temperatures and in the presence of oxygen. The thermal and thermo-oxidative behaviour of discotic triphenylene derivatives was investigated by us using various methods, in particular by chemiluminescence (CL), UV-vis absorption spectroscopy and in situ thermogravimetry-mass spectroscopy (TG-MS). Various degradation processes are described for increasing temperature, and their influences on functional properties are discussed. KW - Liquid crystal KW - Oxidation KW - Thermogravimetry PY - 1999 DO - https://doi.org/10.1002/(SICI)1099-0712(199903/04)9:2<55::AID-AMO366>3.3.CO;2-R SN - 1057-9257 SN - 1099-0712 VL - 9 IS - 2 SP - 55 EP - 64 PB - Wiley CY - Chichester AN - OPUS4-732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence: A promising new testing method for plastic optical fibers JF - Journal of lightwave technology N2 - The thermo-oxidative degradation of a polymeric optical cable is investigated by chemiluminescence, The results are reliable and reproducible. Two distinct processes are reported marked by a peak and a plateau behavior versus the time, respectively. Both processes are ruled by thermally activated processes. Beside the dependencies of temperature and time, the influence of absorbed water is discussed. Chemiluminescence is proposed as a promising candidate for a suitable testing method assessing the thermo-oxidative stability of plastic optical fibers and cables. it requires not more than a simple one-day testing procedure and has the advantage that it can be carried out even within the lo cv temperature ranges of the cables' intended use. KW - Chemiluminescence KW - Chemilumineszenz PY - 1999 DO - https://doi.org/10.1109/50.803022 SN - 0733-8724 SN - 1558-2213 VL - 17 IS - 11 SP - 2291 EP - 2296 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system JF - Polymers for advanced technologies N2 - Polymeric nanocomposites are discussed as one of the most promising advanced materials whose nanoscale effects can be exploited for industry. Layered silicate polypropylene-graft-maleic anhydride nanocomposites are investigated as a model to clarify the potential of such materials in terms of fire retardancy. The nanostructure is characterized using transmission electron microscopy (TEM) and shear viscosity. The fire behavior is characterized using different external heat fluxes in cone calorimeter, limiting oxygen index and UL 94 classification. A comprehensive fire behavior characterization is presented which enables an assessment of the materials’ potential with respect to different fire scenarios and fire tests. The influence of morphology and the active mechanisms are discussed, such as barrier formation and changed melt viscosity. To our knowledge, it is the first attempt to illuminate the concept’s strengths, such as the reduction of flame spread, and weaknesses, such as the lack of influence on ignitability, in a clear, comprehensive and detailed manner. KW - Fire retardancy KW - Nanocomposites KW - Cone Calorimeter KW - LOI KW - UL94 KW - Flame retardance KW - poly(propylene) (PP) KW - Organoclay PY - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/jissue/109085890 SN - 1042-7147 SN - 1099-1581 VL - 15 IS - 7 SP - 355 EP - 364 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-3706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerisation JF - Macromolecular materials and engineering N2 - Communication: Fire retardant coatings are deposited on polyamide-66 using plasma polymerisation. Chemical composition and thickness of deposits are adjusted varying the plasma treatment based on hexamethydisiloxane mixed with oxygen. The fire retardancy performances are evaluated using a cone calorimeter. The correlation between fire retardancy and thickness as well as chemical composition is discussed. KW - Cone calorimeter KW - Flame retardance KW - Heat release KW - Plasma polymerization KW - Polyamides PY - 2002 DO - https://doi.org/10.1002/1439-2054(20020901)287:9<579::AID-MAME579>3.0.CO;2-6 SN - 1438-7492 SN - 1439-2054 VL - 287 IS - 9 SP - 579 EP - 582 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Schmaucks, G. A1 - von der Ehe, Kerstin A1 - Böhning, Martin T1 - Effect of well dispersed amorphous silicon dioxide in flame retarded styrene butadiene rubber JF - Plastics rubber and composites N2 - Spherically shaped amorphous silicon dioxide with broad size particle distribution was used in combination with aluminium trihydroxide (ATH) in styrene butadiene rubber composites. The pyrolysis, flammability, fire properties, flame spread and gas diffusion were investigated. The kind and amount of ATH, but in particular the fine silicon dioxide chosen as an additive, influenced the thermal decomposition and fire behaviour of styrene butadiene rubber composites. Gravimetric gas sorption measurements showed that the gas diffusion was systematically lower with silicon dioxide. The initial pyrolysis gas release was hindered, increasing the temperature at which decomposition begins as well as the ignition time in fire tests. During combustion, ATH and silicon dioxide accumulate on the surface of the specimen, forming a residual protective layer. A reduced peak heat release rate and fire spread were observed. The addition of a special kind of silicon dioxide is proposed to play a key role in optimising fire retardancy. KW - Flame retardancy KW - Styrene butadiene rubber KW - SBR KW - Silicon dioxide KW - Aluminium trihydroxide KW - ATH PY - 2013 DO - https://doi.org/10.1179/1743289812Y.0000000012 SN - 1465-8011 SN - 1743-2898 VL - 42 IS - 1 SP - 34 EP - 42 PB - IOM Communications CY - London, UK AN - OPUS4-27626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahab, M. A. A1 - Kebelmann, Katharina A1 - Schartel, Bernhard A1 - Griffiths, G. T1 - Improving bio-oil chemical profile of seaweeds through anaerobic fermentation pre-treatment JF - Energy conversion and management N2 - Biomass pre-treatments for bio-oil quality improvement are mainly based on thermal and chemical methods which are costly and hence reduce the sustainability of pyrolysis-based refineries. In this paper, anaerobic digestion (AD) and dark fermentation (DF) are proposed as alternative ‘green’ pre-treatments to improve this situation. For this purpose, three seaweeds namely Sargassum polycystum, (Phaephyta), Gracilaria tenuistipitata, (Rhodophyta) and Ulva reticulata, (Chlorophyta) with high ash and oxygen contents were pre-treated to improve their composition and structure prior to pyrolysis. The results reveal that both biological pre-treatments affected, positively, the composition and structure of the seaweed biomass with AD pre-treatment reducing N and S contents by 86% and 63%, respectively. DF was more efficient in terms of ash and moisture reduction with 25% and 70%, respectively. In addition, oxygen (O) reduction by 27% was observed after DF which was evidenced by FTIR spectroscopy indicating the reduction of most oxygen-containing functional groups in the biomass. On the other hand, the carbon (C) content increased in DF pre-treated seaweeds up to 42%, almost two times higher relative content than C in the raw seaweed. The changes in the composition of pre-treated seaweeds resulted in changes in their thermal degradation and the volatile profiles produced during pyrolysis. Interestingly, anhydrosugars and furans which account for some 70% (by area) in raw seaweeds markedly declined or become undetectable after DF pre-treatment and correspondingly more acetic acid and hydrocarbons were produced while after AD more aromatics with high toluene content (ca.17%) were generated. The results indicate that biooil with profiles more similar to petroleum-based composition i.e. rich in hydrocarbons and low in anhydrosugars, N and S can be generated by AD and DF pre-treatments and opens up the possibility of these approaches to effect cost reduction in the overall generation of bio-based fuels. KW - Anaerobic digestion KW - Dark fermentation KW - Pyrolysis KW - Seaweeds KW - Thermogravimetric analysis KW - Pyrolysis volatiles PY - 2021 DO - https://doi.org/10.1016/j.enconman.2021.114632 SN - 0196-8904 VL - 245 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-53136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Synergy in flame-retarded epoxy resin - Identification of chemical interactions by solid-state NMR JF - Journal of Thermal Analysis and Calorimetry N2 - The potential synergists aluminium diethylphosphinate (AlPi), boehmite (AlO(OH)) and melamine polyphosphate (MPP) were compared in flame-retardant epoxy resin (EP)/melamine poly(magnesium phosphate) (S600). The pyrolysis, the fire behaviour as well as the chemical interactions in the gas and condensed phases were investigated by various methods. Flammability was investigated by cone calorimeter and oxygen index (OI). The thermal and thermo-oxidative decomposition were studied by thermogravimetric analysis coupled with FTIR spectrometer. The special focus was on the Investigation of structural changes in the condensed phase via solid-state NMR of 27Al and 31P nuclei. By the comparison of epoxy resin with only one additive or with S600 in combination with AlPi, AlO(OH) or MPP, it was possible to calculate the synergy index. The best performance in terms of fire behaviour was observed for EP/S600/MPP with a PHRR (Peak heat release rate) of 208 kW m-2 due to slight synergy. In the case of THE (total heat evolved), clear synergy occurred for EP/S600/AlPi and EP/S600/AlO(OH). By solid-state NMR, different phosphates and aluminates were identified, indicating the chemical interactions between S600 and AlPi, AlO(OH) or MPP. The systematic multi-methodical approach yielded insight into the synergistic effects in the flame-retarded epoxy resin. KW - Synergy KW - Epoxy resin KW - Flame retardancy KW - Melamine poly(magnesium phosphate) KW - Solid-state NMR PY - 2017 DO - https://doi.org/10.1007/s10973-016-5934-4 SN - 1388-6150 SN - 1588-2926 VL - 128 IS - 1 SP - 141 EP - 153 PB - Springer AN - OPUS4-39298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Schartel, Bernhard A1 - Krüger, Simone T1 - Block it and rock it: Smoke suppressants that form a protective layer in PA 6.6 JF - Journal of Fire Sciences N2 - To ensure fire safety, polymers are filled with flame retardants and smoke suppressants. To meet the highest requirements, it is essential to understand the decomposition of those polymeric materials. This study reveals interactions between polymer, smoke suppressants, and flame retardants, and discusses their impact on the materials’ flame retardancy, smoke emission, smoke toxicity, and particle emission in conventional loadings to provide deeper general understanding. Low melting oxide glass, melem, spherical silica, sepiolite, melamine polyphosphate, and boehmite in an aluminum diethylphosphinate flame-retarded polyamide 6.6 were investigated. All smoke suppressants improve the protective layer and act as an adjuvant. Silica and melem performed best under forced flaming conditions. Spherical silica reduces the peak of heat release rate by 39% and the total heat evolved by 14%, whereas 10 wt% melem lowers the total smoke production by 41%. Melem alters the mode of action of aluminum diethylphosphinate from gas to more condensed phase activity. This change reduces flame inhibition and hence smoke toxicity, but further improves the protective layer due to charring reactions in the decomposition mechanism. In addition, the sizes of the smoke particles decrease because of the prolonged time in the pyrolytic zone. This study highlights that interactions between polymer, flame retardants, and smoke suppressants can significantly determine the smoking and burning behavior. KW - Smoke suppressant KW - Flame retardancy KW - Aluminum diethylphosphinate KW - Smoke KW - Polyamide 6.6 PY - 2024 DO - https://doi.org/10.1177/07349041231220250 SN - 0734-9041 VL - 42 IS - 2 SP - 117 EP - 141 PB - SAGE Publications AN - OPUS4-59533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Perret, Birgit A1 - Dittrich, Bettina A1 - Ciesielski, M. A1 - Krämer, J. A1 - Müller, P. A1 - Altstädt, V. A1 - Zang, L. A1 - Döring, M. T1 - Flame retardancy of polymers: the role of specific reactions in the condensed phase JF - Macromolecular materials and engineering N2 - Condensed-phase mechanisms play a major role in fire-retardant polymers. Generations of development have followed the concept of charring to improve fire properties. Whereas the principal reactions are believed to be known, the specific description for multicomponent systems is lacking, as is the picture across different systems. A two-step approach is proposed in general, and also presented in greater detail. The second step covers the specific reactions controlling charring, whereas the actual reactants are provided in the preceding step. This model consistently incorporates the variety of structure–property relationships reported. A comprehensive case study is presented on seven phosphorus flame retardants in two epoxy resins to breathe life into the two-step approach. KW - Charring KW - Epoxy KW - Flame retardancy KW - Pyrolysis KW - Thermogravimetric analysis (TGA) PY - 2016 DO - https://doi.org/10.1002/mame.201500250 SN - 1438-7492 SN - 1439-2054 VL - 301 IS - 1 SP - 9 EP - 35 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -