TY - JOUR A1 - Lippitz, Andreas A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang T1 - Plasma bromination of HOPG surfaces: a NEXAFS and synchrotron XPS study N2 - Br bonding on plasma brominated graphite surfaces has been studied by using Near Edge X-ray Absorption Fine Structure (NEXAFS) and X-ray Photoelectron Spectroscopy (XPS). Br2 and bromoform were used as plasma gases in an r.f. cw low pressure plasma process. Kr plasma had been used to study separately the physical and chemical plasma etching effects. At early steps of plasma bromination which lead to only small XPS Br surface concentration values a quick decay of aromaticity has been observed. At low Br surface concentration radical or even electrophilic addition of bromine onto sp2 carbon atoms is discussed as the dominating reaction pathway. At higher Br surface concentrations the inherent formation of sp3 defects in the graphene network by chemical etching processes promotes nucleophilic substitution of bromine at sp3 carbons as a competing reaction pathway. Both reaction pathways lead to C–Br species characterized by the same Br 3d XPS binding energy. However more than one Br 3d component in XP spectra has been found at lower Br2 plasma induced Br surface concentrations and complexation of bromine at HOPG is assumed as a third way of interaction with Br2 plasma. KW - HOPG KW - Graphite KW - Plasma bromination KW - Low pressure plasma KW - NEXAFS KW - XPS PY - 2013 U6 - https://doi.org/10.1016/j.susc.2013.01.020 SN - 0039-6028 VL - 611 SP - L1 EP - L7 PB - Elsevier CY - Amsterdam AN - OPUS4-27928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Horlacher, T. A1 - Girard-Lauriault, Pierre-Luc A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Min, Hyegeun A1 - Wirth, Thomas A1 - Castelli, R. A1 - Seeberger, P. A1 - Unger, Wolfgang T1 - Multimethod chemical characterization of carbohydrate-functionalized surfaces N2 - A combined XPS, NEXAFS, and ToF-SIMS chemical surface characterization of carbohydrate-functionalized gold and glass surfaces is presented. Spot shape and chemical composition across a spot surface are provided by surface-sensitive methods as ToF-SIMS and XPS, used in their imaging modes. Moreover, the feasibility of this multimethod approach to control relevant production steps of a carbohydrate microarray prototype is demonstrated. KW - Carbohydrates KW - Microarrays KW - Self-assembled monolayers KW - XPS KW - NEXAFS KW - ToF-SIMS PY - 2011 U6 - https://doi.org/10.1080/07328303.2011.615181 SN - 0732-8303 VL - 30 IS - 4-6 SP - 361 EP - 372 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-24874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Horlacher, T. A1 - Girard-Lauriault, Pierre-Luc A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Min, Hyegeun A1 - Wirth, Thomas A1 - Castelli, R. A1 - Seeberger, P.H. A1 - Unger, Wolfgang T1 - Adlayers of dimannoside thiols on gold: surface chemical analysis N2 - Carbohydrate films on gold based on dimannoside thiols (DMT) were prepared, and a complementary surface chemical analysis was performed in detail by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near-edge X-ray absorption fine structure (NEXAFS), FT-IR, and contact angle measurements in order to verify formation of ω-carbohydrate-functionalized alkylthiol films. XPS (C 1s, O 1s, and S 2p) reveals information on carbohydrate specific alkoxy (C–O) and acetal moieties (O–C–O) as well as thiolate species attached to gold. Angle-resolved synchrotron XPS was used for chemical speciation at ultimate surface sensitivity. Angle-resolved XPS analysis suggests the presence of an excess top layer composed of unbound sulfur components combined with alkyl moieties. Further support for DMT attachment on Au is given by ToF-SIMS and FT-IR analysis. Carbon and oxygen K-edge NEXAFS spectra were interpreted by applying the building block model supported by comparison to data of 1-undecanethiol, poly(vinyl alcohol), and polyoxymethylene. No linear dichroism effect was observed in the angle-resolved C K-edge NEXAFS. KW - Carbohydrates KW - Self-assembled monolayer KW - XPS KW - NEXAFS KW - ToF-SIMS KW - Surface chemical analysis PY - 2011 U6 - https://doi.org/10.1021/la104038q SN - 0743-7463 SN - 1520-5827 VL - 27 IS - 8 SP - 4808 EP - 4815 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 U6 - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cant, D. J. H. A1 - Müller, Anja A1 - Clifford, C. A. A1 - Unger, Wolfgang A1 - Shard, A. G. T1 - Summary of ISO/TC 201 Technical Report 23173—Surface chemical analysis—Electron spectroscopies—Measurement of the thickness and composition of nanoparticle coatings N2 - ISO Technical Report 23173 describes methods by which electron spectroscopies, including X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and synchrotron techniques, can be employed to calculate the Coating thicknesses and compositions of nanoparticles. The document has been developed to review and outline the current state-of-the-art for such measurements. Such analyses of core–shell nanoparticles are common within the literature, however the methods employed are varied; the relative advantages and disadvantages of These methods, and the optimal usage of each may not be clear to the general analyst. ISO Technical Report 23173 aims to clarify the methods that are available, describe them in clear terms, exhibit examples of their use, and highlight potential issues users may face. The information provided should allow analysts of electron spectroscopy data to make clear choices regarding the appropriate analysis of electron spectroscopy data from coated nanoparticle systems and provide a basis for understanding and comparing results from different methods and systems. KW - Electron spectroscopy KW - Core-shell KW - Nanoparticles KW - ISO 23173 KW - XPS KW - Thickness KW - Composition PY - 2021 U6 - https://doi.org/10.1002/sia.6987 SN - 0142-2421 VL - 53 IS - 10 SP - 893 EP - 899 PB - John Wiley & Sons Ltd AN - OPUS4-52976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Advanced surface chemical analysis of plasma modified polymers and plasma-polymers N2 - A comprehensive characterization of plasma modified polymer surfaces or plasma-polymerized thin films needs access to parameters as - concentration of saturated/unsaturated carbon species (e.g. aromaticity) or other double bonds as C=N or C=O, - branching, and - losses of crystallinty or other degrees of structural order. Furthermore the complex ageing phenomena of plasma modified polymers/plasma-polymers and the measurement of an in-depth distribution of chemical species are challenges for the analyst. The talk will display selected examples where such challenges have been met by using advanced methods of surface chemical analyses as Photoelectron Spectroscopy with variable excitation energy (“SyncXPS”), X-ray Absorption Spectroscopy (NEXAFS) at C, N and O K-edges and Time-of-Flight Secondary Mass Spectroscopy (ToF-SIMS) combined with Principal Component analysis (PCA). T2 - IAP workshop – IAP 2016 "Organic surface modifications by plasmas and plasma-polymers" CY - Nancy, France DA - 08.06.2016 KW - XPS KW - NEXAFS KW - SIMS KW - Plasmapolymer PY - 2016 AN - OPUS4-36725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Nietzold, Carolin A1 - Weise, Matthias A1 - Unger, Wolfgang A1 - Alnabulsi, Saad A1 - Moulder, John T1 - XPS depth profiling of an ultrathin bioorganic film with an argon gas cluster ion beam N2 - The growing interest in artificial bioorganic Interfaces as a platform for applications in emerging Areas as personalized medicine, clinical diagnostics, biosensing, biofilms, prevention of biofouling, and other fields of bioengineering is the origin of a need for in Detail multitechnique characterizations of such layers and interfaces. The in-depth analysis of biointerfaces is of special interest as the properties of functional bioorganic coatings can be dramatically affected by in-depth variations of composition. In worst cases, the functionality of a device produced using such coatings can be substantially reduced or even fully lost. KW - XPS KW - Ar gas cluster gun KW - Depth profiling KW - Bioorganic film PY - 2016 UR - http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4948341 U6 - https://doi.org/10.1116/1.4948341 SN - 1934-8630 VL - 11 IS - 2 SP - 029603-1 EP - 029603-5 PB - American Vacuum Society CY - New York AN - OPUS4-36218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Nele A1 - Dietrich, Paul M. A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC) N2 - In this study, a new direct functionalization method of silicon nitride (Si3N4) using azidation and click chemistry is presented. First, amino groups (NHx) were created on a Si3N4 substrate by fluoride etching. These NHx-terminated Si3N4 surfaces were analyzed by chemical derivatization X-ray photoelectron spectroscopy (CD-XPS) with 4-trifluoromethylbenzaldehyde (TFBA) and a derivatization yield of 20% was concluded. In the second step freshly prepared NHx surfaces were transformed into azides which were used immediately in a click reaction with halogenated alkynes. The presented combination of amination, azidation and click reaction is a promising alternative for common silane-based Si3N4 functionalization methods. T2 - 16th European Conference on Applications of Surface and Interface Analysis CY - Granada, Spain DA - 28.09.2015 KW - XPS KW - Azidation KW - Click chemistry KW - Silicon nitride KW - Chemical derivatization PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/sia.5950/full U6 - https://doi.org/10.1002/sia.5950 VL - 48 SP - 621 EP - 625 PB - John Wiley & Sons, Ltd AN - OPUS4-36841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Hennig, Andreas A1 - Holzweber, Markus A1 - Thiele, T. A1 - Borcherding, H. A1 - Lippitz, Andreas A1 - Schedler, U. A1 - Resch-Genger, Ute A1 - Unger, Wolfgang T1 - Surface analytical study of poly(acrylic acid)-grafted microparticles (beads): characterization, chemical derivatization, and quantification of surface carboxyl groups N2 - We report a surface analytical study of poly(methyl methacrylate) (PMMA) microparticles (beads) with a grafted shell of poly(acrylic acid) (PAA) with thicknesses up to 4 nm using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy. These polymer microparticles were analyzed before and after reaction of the surface carboxyl (CO2H) groups with 2,2,2-trifluoroethylamine (TFEA) to gain a better understanding of methods with use of covalently bound probe molecules for surface group analysis. The results obtained with chemical derivatization XPS using TFEA are discussed in terms of surface quantification of reactive CO2H groups on these PAA-coated microparticles. A labeling yield of about 50% was found for TFEA-derivatized particles with amounts of surface-grafted CO2H groups of 99 µmol/g or more, which is consistent with predicted reaction yields for homogeneously dispersed PAA hydrogels. KW - Polymer microparticles KW - Poly(acrylic acid)-grafted microparticles KW - Beads KW - XPS KW - SEM KW - NEXAFS KW - Surface analysis KW - Fluorine labeling PY - 2014 U6 - https://doi.org/10.1021/jp505519g SN - 1932-7447 SN - 1089-5639 VL - 118 IS - 35 SP - 20393 EP - 20404 PB - Soc. CY - Washington, DC AN - OPUS4-31326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Bütefisch, S. A1 - Busch, I. A1 - Rossi, A. A1 - Passiu, C. A1 - Spencer, N.D. T1 - Testing lateral resolution and field of view in imaging and small area analysis: reference materials and standardization N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1 xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. T2 - 7th International Symposium on Practical Surface Analysis(PSA-16) CY - Daejeon, Korea DA - 17.10.2016 KW - BAM L200 KW - SIMS KW - AES KW - XPS PY - 2016 AN - OPUS4-38266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -