TY - JOUR A1 - Klapper, Helmuth Sarmiento A1 - Burkert, Andreas A1 - Burkert, Annette A1 - Lehmann, Jens A1 - Villalba, A.L. T1 - Influence of surface treatments on the pitting corrosion of type 304 stainless steel by electrochemical noise measurements N2 - Surface treatments usually are used to modify the appearance and properties of stainless steel surfaces. Simultaneously, the corrosion resistance of the stainless steel surface being related intrinsically to the spontaneous formation of a passive layer also will be affected. In this respect, the influence of different surface treatments on the corrosion resistance of Type 304 (UNS S30400) stainless steel to pitting corrosion has been evaluated by means of potentiostatic electrochemical noise measurements and surface characterization. Typical industrial treatments including mechanical grinding, glass blasting, and pickling were taken into account. Additionally, special consideration was put on the effect of aging conditions of the passive layer after surface treatments, in particular on the relative humidity. Benefits and limitations of the different applied surface treatments concerning protectiveness of the stainless steel surface were determined and discussed. KW - Corrosion KW - Electrochemical noise KW - Pitting corrosion KW - Stainless steel KW - Surface treatment PY - 2011 DO - https://doi.org/10.5006/1.3613641 SN - 0010-9312 SN - 1938-159X VL - 67 SP - 075004-1 EP - 075004-13 PB - National Association of Corrosion Engineers CY - Houston, Tex. AN - OPUS4-24247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Reliability of pipe steels with different amounts of C and Cr during onshore carbon dioxide injection N2 - During the compression of emission gasses into deep geological layers (Carbon Dioxide Capture and Storage, CCS) CO2-corrosion will become a relevant safety issue. The reliability of the steels used at a geological onshore CCS-site in the Northern German Bassin 42CrMo4 (1.7225, AISI 4140) used for casing, and the injection pipe steels X46Cr13 (1.4034, AISI 420 C), X20Cr13 (1.4021, AISI 420 J) as well as X35CrMo17 (1.4122) is demonstrated in laboratory experiments. Samples were kept in a synthetic aquifer environment at T = 60 °C. This corrosive environment is then saturated with technical CO2 at a flow rate of 3 l/h. Microstructures were characterized by X-ray diffraction, light microscopy, scanning electron microscopy, and energy dispersive X-ray analysis, after a series of heat treatments (700 h to 2 years). The non-linear isothermal surface corrosion behaviour of the steels reveals surface corrosion rates around 0.1–0.8 mm/year, when obtained by mass gain. Severe pit corrosion (pit heights ca. 4.5 mm) are only located on the injection pipe steels. Main phases of the continuous scales are siderite FeCO3 and goethite α-FeOOH. The formation of the non-protective layer is likely to form via a transient Fe(OH)2-phase. KW - Steel KW - Pipe KW - Corrosion KW - Carbonate layer KW - CO2-injection KW - CO2-storage CCS PY - 2011 DO - https://doi.org/10.1016/j.ijggc.2011.03.006 SN - 1750-5836 VL - 5 IS - 4 SP - 757 EP - 769 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-25533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dantan, Nathalie A1 - Höhse, Marek A1 - Karasyov, A.A. A1 - Wolfbeis, Otto S. T1 - Entwicklung eines optischen pH-Sensors zur Früherkennung korrosionsgefährdender Zustände in Stahlbeton KW - Korrosion KW - Stahlbeton KW - Monitoring KW - pH-Wert KW - Faseroptik KW - Sensorik KW - Corrosion KW - Steel-reinforced concrete KW - pH value KW - Fiber optic sensor PY - 2007 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 74 IS - 4 SP - 211 EP - 216 PB - Oldenbourg CY - München AN - OPUS4-14971 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pettersson, C.O. A1 - Böllinghaus, Thomas A1 - Kannengießer, Thomas T1 - Corrosion testing of welds, a review of methods KW - Austenitic stainless steels KW - Carbon steels KW - Corrosion KW - Corrosion tests KW - Crevice corrosion KW - Duplex stainless steels KW - Fatigue strength KW - Galvanic corrosion KW - Intergranular corrosion KW - Low alloy steels KW - Mechanical properties KW - Nickel alloys KW - Pitting corrosion KW - Stress corrosion KW - Stainless steels KW - Steels KW - Unalloyed steels KW - Welded joints KW - Weld metal PY - 2007 SN - 0043-2288 SN - 1878-6669 VL - 51 IS - 7/8 SP - 79 EP - 106 PB - Springer CY - Oxford AN - OPUS4-15727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Raupach, M. ED - Elsener, B. ED - Polder, R. ED - Mietz, Jürgen ED - M. Raupach, ED - Elsener, B. ED - R. Polder, ED - J. Mietz, T1 - Corrosion of reinforcement in concrete KW - Concrete KW - Corrosion KW - Reinforcement KW - Rehabilitation KW - Monitoring KW - Inhibitors PY - 2007 SN - 978-1-84569-210-0 SP - 1 EP - 312 PB - Woodhead Publishing Ltd CY - Cambridge, Great Britain AN - OPUS4-16588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Moraes, Flavia A1 - Müller, Wolfgang A1 - Frischat, G.H. A1 - Müller, Ralf T1 - Corrosion and crystallization at the inner surfaces of glass bricks N2 - Glass bricks are important transparent building materials. They are produced by joining two halves of glass pressings at 600–700 °C. During this production process alkali oxides evaporate and are redeposited at the cooler inner front surfaces of the bricks. This surface layer reacts with H2O and CO2 from the residual brick atmosphere, leading to the formation of an alkali-rich silicate-hydrate layer of ≥50 nm thickness, which could be evidenced leading to a reduced nano-hardness of similar thickness, and from which NaHCO3 crystals can finally grow. Climate chamber experiments (repeated cooling between at -8 and -14 °C and reheating to 0 to 15 °C) resulted in reversible NaHCO3 crystallization and redissolution, presumably influenced by water evaporation or condensation and driven by the NaHCO3 supersaturation of the silicate-hydrate layer. Depending on the time–temperature schedule, different crystal morphologies became visible in this closed system, e.g. isolated spherical crystals, crystals arranged in chains and in double-chains, respectively, which can limit already the transmittance of the glass bricks. When a crack occurs or the brick is opened, the hygroscopic NaHCO3 crystals take up more H2O from the ambient, react irreversibly with the glass surface, finally leading to a total loss of transmittance. KW - Chemical properties KW - Chemical durability KW - Corrosion KW - Crystallization KW - Crystal growth KW - Nucleation KW - Glasses KW - Mass spectroscopy KW - Mechanical properties KW - Hardness KW - Indentation KW - Microindentation KW - Microscopy KW - Optical microscopy KW - Scanning electron microscopy KW - Optical properties KW - Optical spectroscopy KW - Oxide glasses KW - Alkali silicates KW - Soda-lime-silica KW - Surfaces and interfaces PY - 2008 DO - https://doi.org/10.1016/j.jnoncrysol.2007.07.086 SN - 0022-3093 VL - 354 IS - 2-9 SP - 284 EP - 289 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-16433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichler, Thorsten A1 - Burkert, Andreas A1 - Beck, Matthias T1 - Electrochemical noise measurements on unalloyed steel in chloride-containing alkaline environment N2 - The investigations discussed in this paper aim to clarify whether electrochemical noise measurements (ENM) are capable for application in concrete and mortar, particularly with regard to pitting initiation in such environment. For these purposes, the results of several different test series are compared and discussed. Based on investigations on passivity and pitting corrosion in alkaline solutions with different chloride contents further results in cement paste, mortar and concrete are evaluated. KW - Electrochemical noise KW - Corrosion KW - Steel in Concrete KW - Chlorides KW - Pitting Corrosion KW - Cement KW - Mortar KW - Black Steel PY - 2007 DO - https://doi.org/10.1002/maco.200704089 SN - 0947-5117 SN - 1521-4176 VL - 58 IS - 12 SP - 961 EP - 969 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-16374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Kranzmann, Axel ED - Roland Span, ED - Ingo Weber, T1 - Effect of CO2 on the stability of steels with 1% and 13% Cr in saline water T2 - 15th International Conference on the Properties of Water and Steam (ICPWS XV), "Water, Steam, and Aqueous Solutions - Advances in Science and Technology for Power Generation" CY - Berlin, Germany DA - 2008-09-07 KW - Steel KW - Corrosion KW - Injection tube KW - Carbonate scale KW - CO2-storage KW - CO2-injection PY - 2008 SN - 978-3-931384-64-7 IS - Session 06: Electro-12 SP - 1 EP - 11 AN - OPUS4-17869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dantan, Nathalie A1 - Habel, Wolfgang A1 - Wolfbeis, Otto S. ED - Udd, E. T1 - Fiber optic pH sensor for early detection of danger of corrosion in steel-reinforced concrete structures T2 - 12th SPIE International Symposium "Smart Structures and Materials 2005 CY - San Diego, CA, USA DA - 2005-05-06 KW - Korrosion KW - Stahlbeton KW - Monitoring KW - pH KW - Faseroptischer Sensor KW - Langzeitstabilität KW - Indikator KW - Immobilisierung KW - Corrosion KW - Steel-reinforced concrete KW - Fiber optic sensor KW - Long-term stability KW - Indicator KW - Immobilization PY - 2005 SN - 0-8194-5739-6 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 5758 SP - 274 EP - 284 PB - SPIE CY - Bellingham AN - OPUS4-11768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosemann, P. A1 - Müller, Thoralf A1 - Babutzka, Martin A1 - Heyn, Andreas ED - J. Grosch, ED - E.J. Mittemeijer, T1 - Qualitätsbewertung von Schneidwaren durch Kurzzeit-Korrosionsprüfung N2 - Bei der Qualitätsbewertung von Schneidwaren aus nichtrostenden martensitischen Chrom-Stählen stellt die Überprüfung der Korrosionsbeständigkeit ein wichtiges Kriterium dar. Allgemein üblich sind Wechseltauchversuche mit relativ hohem zeitlichem und auswertungsbedingtem Aufwand, die noch dazu zerstörend sind und teilweise fragwürdige Ergebnisse liefern. In den letzten Jahren wurden neue Ansatze der Prüfung geschaffen, die eine nahezu zerstörungsfreie Kurzzeit-Korrosionsprüfung erlauben. Es wird gezeigt, dass mit dem elektrochemischen Rauschen sehr empfindlich Einflüsse des Härtens und der Oberflächenbehandlung auf die Korrosionsbeständigkeit nachgewiesen werden können, wodurch eine schnelle und objektive Qualitätsbewertung innerhalb des Fertigungsprozesses und der Endkontrolle von Produkten möglich ist. Das für die Prüfmethodik ausgenutzte Phänomen des elektrochemischen Rauschens zielt darauf ab, den Beginn der Korrosion empfindlich und schnell zu detektieren, ohne die Prüfbedingungen maßlos zu verschärfen und Produkte damit zu zerstören. Neben der Funktionalität der Prüfung stehen aber auch die Anwenderfreundlichkeit und somit die Akzeptanz bei den Herstellern im Vordergrund. Aus diesem Grund wurde zusätzlich ein Indikatortest (KorroPad) als praxistaugliche Alternative zum elektrochemischen Rauschen angewendet. Die Ergebnisse zeigen eine gute Übereinstimmung beider Methoden und ermöglichen eine effektive betriebliche Qualitätsüberwachung von Schneidwaren. KW - Schneidwaren KW - Nichtrostender Stahl KW - Korrosion KW - Prüfmethoden KW - Qualitätskontrolle KW - Cutlery KW - Stainless steel KW - Corrosion KW - Testing methods KW - Quality control PY - 2013 DO - https://doi.org/10.3139/105.110195 SN - 1867-2493 VL - 68 IS - 5 SP - 224 EP - 235 PB - Hanser CY - München AN - OPUS4-29341 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Wiegand, Reiner A1 - Kranzmann, Axel A1 - Bork, Claus-Peter T1 - Corrosion fatigue behavior and S-N-curve of X46Cr13 exposed to CCS-environment obtained from laboratory in-situ-experiments N2 - In corrosive environments such as CCS bore holes or geothermal power plants the materials loaded cyclically are also exposed constantly to the highly corrosive hot thermal water. The lifetime reduction of (X46Cr13, AISI 420C) is demonstrated in in-situ-laboratory experiments (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 Nl/h, CO2). S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue is most likely failure cause. KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2013 DO - https://doi.org/10.1016/j.egypro.2013.06.499 SN - 1876-6102 VL - 37 SP - 5764 EP - 5772 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-29342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bender, S. A1 - Göllner, J. A1 - Heyn, Andreas A1 - Blawert, C. A1 - Srinivasan, P.B. ED - Pekguleryuz, M.O. ED - Kainer, K.U. ED - Kaya, A. T1 - Corrosion and surface finishing of magnesium and its alloys N2 - While the possibilities of improving corrosion resistance (especially galvanic corrosion) by alloying are limited, surface finishing of magnesium alloys is the alternative for improving corrosion resistance. Due to the low corrosion potential of Mg and the danger of galvanic corrosion in the case of a coating defect, the choice of coatings is limited. This chapter will summarize the corrosion behavior of magnesium alloys and the metallurgical possibilities to improve the corrosion resistance of the alloys and reviewing critically the most commonly used surface treatments and coatings for magnesium. KW - Corrosion KW - Corrosion testing KW - Negative difference effect (NDE) KW - Conversion coatings KW - Plasma electrolytic oxidation KW - Organic coatings KW - Galvanic coatings PY - 2013 SN - 978-0-85709-088-1 SN - 978-0-85709-729-3 DO - https://doi.org/10.1533/9780857097293.232 IS - Chapter 7 SP - 232 EP - 265 PB - Woodhead Publishing Ltd AN - OPUS4-29332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, S. A1 - Holzhausen, U. A1 - Heyn, Andreas T1 - Investigations of the aqueous corrosion of pretreated magnesium alloys by means of electrochemical noise measurements N2 - An important possibility to improve the corrosion behaviour of magnesium alloys is the application of protective coatings. The quality of such coatings depends mainly on the pretreatment and the exposure conditions after pretreatment. Since magnesium surfaces change much faster under atmospheric conditions than those of almost any other technical material, it is necessary to pay special attention to this particular feature. The activity of acid-pickled surfaces of the magnesium alloys AZ31 and AZ91 in dependence on the exposure time and the humidity conditions was investigated with electrochemical noise (EN) measurements. In addition to pickling, plasma chemical vapour deposition processes open new possibilities for an economical, as well as ecologically quite safe, pretreatment. The results of EN investigations after acid pickling as well as specific plasma oxidation treatments of the two magnesium alloys after exposure to air with different humidities are presented. KW - Corrosion KW - CVD KW - Electrochemical noise KW - Magnesium alloys KW - Pretreatment PY - 2013 DO - https://doi.org/10.1002/maco.201206741 SN - 0947-5117 SN - 1521-4176 VL - 64 IS - 8 SP - 708 EP - 713 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosemann, P. A1 - Schmidt, J. A1 - Heyn, Andreas T1 - Short and long term degradation behaviour of Mg-1Ca magnesium alloys and protective coatings based on plasma-chemical oxidation and biodegradable polymer coating in synthetic body fluid N2 - The main problem limiting the application of magnesium alloys as biodegradable implant material is its high degradation rate. In order to slow down the corrosion rate an extrusion process and specific coating systems based on plasma-chemical oxidation (PCO) and organic dip coating with poly(ʟ-lactid-co-caprolacton) (PLLC) were applied on Mg–1Ca magnesium alloy. The additional PLLC coating is used to delay the start of substrate corrosion, while the purpose of the PCO coating is to decrease the substrate corrosion rate. The corrosion behaviour was investigated in synthetic body fluid (SBF) through measurement of the hydrogen evolution rate in long term tests and polarisation and electrochemical noise measurements in short term tests. The results showed significant differences between the cast and extruded alloys and a decrease of the corrosion rate due to corrosion product formation. The combination of both coating systems resulted in a significant delay of metal substrate corrosion and all coating systems showed good correlation between short and long term tests. The combination of the three investigation methods provides the possibility to gain more information about the degradation behaviour and break down of protective coatings. KW - Coatings KW - Corrosion KW - Electrochemical noise KW - Magnesium KW - Plasma-chemical oxidation PY - 2013 DO - https://doi.org/10.1002/maco.201206590 SN - 0947-5117 SN - 1521-4176 VL - 64 IS - 8 SP - 714 EP - 722 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Dreßler, Martin A1 - Hünert, Daniela A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Sol-gel alumina coatings for high-temperature corrosion protection of Ni-base alloy SC16 in water vapour containing atmosphere N2 - Alumosols in combination with well dispersed corundum were successfully used to form up to 2.5 ìm thick coatings on the Ni-base alloy SC16. These coatings withstood heat treatments at 700 °C in a water vapour containing atmosphere. The heat treatment caused formation of delta-alumina in the coating and diffusion of chromium and titanium into the coating. KW - Alumina KW - Coating KW - Sol-gel KW - Corrosion KW - Protection PY - 2009 SN - 0020-5214 VL - 58 IS - 4 SP - 192 EP - 195 PB - DVS-Verl. CY - Düsseldorf AN - OPUS4-19726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Kranzmann, Axel ED - C.A. Brebbia, ED - V. Popov, T1 - Influence of CO2 on the corrosion behaviour of 13Cr martensitic stainless steel AISI 420 and low-alloyed steel AISI 4140 exposed to saline aquifer water environment T2 - 17th International Conference on Modelling, Monitoring and Management of Air Pollution CY - Tallinn, Estonia DA - 2009-07-20 KW - Steel KW - Pipeline KW - Corrosion KW - CCS KW - Carbon capture KW - CO2-injection PY - 2009 SN - 978-1-84564-195-5 DO - https://doi.org/10.2495/AIR090371 SN - 1746-448X SN - 1746-3541 VL - 123 SP - 409 EP - 418 PB - WIT Press AN - OPUS4-19783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Linke, B. A1 - Kranzmann, Axel T1 - Predicting the long term corrosion behaviour of pipe steels used at the CCS-site Ketzing, Germany in laboratory CO2-saturated saline aquifer CCS-environment T2 - First international conference on materials for energy CY - Karlsruhe, Germany DA - 2010-07-04 KW - CCS KW - Corrosion KW - Steels KW - Injection pipe PY - 2010 SN - 978-3-89746-117-8 IS - Paper 1067 SP - 1005 EP - 1007 AN - OPUS4-21684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Linke, Barbara A1 - Kranzmann, Axel T1 - Carbon capture and storage technique (CCS): Reliability of pipe steels used in Ketzin, Germany verified in laboratory saline aquifer corrosion experiments N2 - During the compression emission gasses in deep geological layers (Carbon Capture and Storage, CCS) CO2-corrosion will become a relevant safety issue. The reliability of the steels used at the geological onshore CCS-site at Ketzin, Germany, (heat treated steel 42CrMo4 (1.7225, AISI 4140) used for casing, and the martensitic stainless injection pipe steels X46Cr13 (1.4034, AISI 420 C), X20Cr13 (1.4021, AISI 420 J), X35CrMo17 (1.4122)) is demonstrated in 1 and 2 years laboratory experiments. Samples were kept in a synthetic aquifer environment similar to the geological CCS-site at Ketzin, Germany at T=60 °C. This corrosive environment is then saturated with technical CO2 at a flow rate of 3 l/h. Microstructures were characterized by X-ray diffraction, light microscopy, scanning electron microscopy, and energy dispersive X-ray, after a series of heat treatments (700 h to 2 years). Due to very slow mass loss at extended exposure times to CCS-environment one year is sufficient to predict stable surface corrosion rates from laboratory experiments. The non-linear isothermal surface corrosion behaviour of the steels reveals surface corrosion rates around 0.1 to 0.8 mm/year, when obtained by mass gain. The loss of the base material is higher when calculated from the corrosion layer magnitude due to the unpredictable local corrosion attacks. Severe pit corrosion (pit heights ca. 4.5 mm) are only located on the high chromium steels. Main phases of the continuous scales are siderite FeCO3 and goethite α-FeOOH. The formation of the non-protective layer is likely to form via a transient Fe(OH)2-phase. T2 - MWWD & IEMES 2010 - 6th International conference on marine waste water discharges and coastal environment CY - Langkawi, Malaysia DA - 2010-10-25 KW - Saline aquiver KW - Environmental issues KW - CCS KW - CO2-injection KW - CO2-storage KW - Corrosion KW - Phase formation PY - 2010 SN - 978-9944-5566-4-4 IS - Paper 047_P SP - 1 EP - 17 AN - OPUS4-22333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam weldability of high-manganese austenitic and duplex stainless steel sheets N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fluctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefits regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with standard CrNi steels. Main emphasis was laid on finding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint configurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The influence of the shielding gas type and flow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers KW - Weldability PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 1/2 SP - 9 EP - 20 PB - Springer CY - Oxford AN - OPUS4-25404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hong, Shuxian A1 - Lai Wai-Lok, Wallace A1 - Helmerich, Rosemarie T1 - Monitoring accelerated corrosion in chloride contaminated concrete with ground penetrating radar T2 - 14th International conference on ground penetrating radar - GPR 2012 CY - Shanghai, China DA - 2012-06-04 KW - GPR KW - Reinforcing steel KW - Corrosion KW - Chloride PY - 2012 SN - 978-1-4673-2663-6 SP - 1 EP - 6(?) AN - OPUS4-26122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichler, Thorsten A1 - Isecke, Bernd A1 - Wilsch, Gerd ED - Forde, M.C. T1 - Investigations on the secondary protection mechanisms in cathodic protection applications N2 - A joint research project was accomplished by ibac and BAM with the aim to develop a numerical model of cathodic protection (CP) of reinforced concrete with a special focus on CP of the rear reinforcement layer. The model was intended to include the effects of chemical alterations within the concrete and the steel concrete interface, which are induced by long-term application of CP. The investigations presented in this paper focus on the migration of chloride ions due to small electric fields as applied during cathodic protection of steel in reinforced concrete structures and its impact on polarisation characteristics. A comparatively new method, laser induced breakdown spectroscopy (LIBS), was used to determine chloride profiles on laboratory specimens in order to investigate one of several model parameters to describe cathodic protection of the rear reinforcement of reinforced concrete structures. These investigations are described elsewhere, [1]. The paper focuses on long term polarisation tests and their impact on the charge depending cathodic polarisation behaviour of laboratory specimens. T2 - Structural faults & repair 2012 - 14th International conference and exhibition CY - Edinburgh, Scotland DA - 2012-07-03 KW - Concrete KW - Cathodic protection KW - Chloride migration KW - Corrosion KW - Steel in concrete PY - 2012 SN - 0-947664-71-7 SP - 1 EP - 6 PB - Engineering Technics Press AN - OPUS4-26413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broomfield, J. A1 - Fischer, Joachim A1 - Mietz, Jürgen A1 - Schneck, U. T1 - Case studies N2 - In this paper, some quite different survey tasks are described, and it can be seen that corrosion surveys will follow a certain scheme of data acquisition (first NDT measurements, than detailed testing on suspect areas), but the individual scope of on-site measurements may have a vast variety according to the local circumstances, and the interpretation always has to refer to a wider set of information than the data readings only. KW - Corrosion surveys KW - Non-destructive testing KW - Reinforcement KW - Concrete KW - Potential mapping KW - Corrosion PY - 2013 DO - https://doi.org/10.1002/maco.201206649 SN - 0947-5117 SN - 1521-4176 VL - 64 IS - 2 SP - 147 EP - 160 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Klingbeil, Dietmar T1 - Structural assessment of railway axles - A critical review N2 - The safety assessment of railway axles is based on a two-stage approach: fatigue strength design and regular inspections which, in terms of a general safety philosophy refer to safe-life and damage tolerance concepts. Starting with a recent failure case, a broken axle of a German high speed train, a discussion is presented on issues of both safety levels. These include ideas for finite life design, the treatment of in-service effects on the fatigue strength due to flying ballast damage and corrosion pits, the effect of corrosion on fatigue crack initiation and propagation, potential effects of non-metallic inclusions in steels, the way to detect them by quality control measures and reliability aspects of non-destructive testing with respect to the detection of fatigue cracks. Proposals are made how the safety level could be further improved. KW - Railway axles KW - Safe life design KW - Damage tolerance design KW - Non-destructive testing KW - Flying ballast impact KW - Corrosion KW - Non-metallic inclusions PY - 2013 UR - http://www.sciencedirect.com/science/article/pii/S1350630712002531 SN - 1350-6307 SN - 1873-1961 VL - 35 IS - Special issue on ICEFA V- Part 1 SP - 54 EP - 65 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-29715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmigalla, S. A1 - Bender, S. A1 - Heyn, Andreas A1 - Schmidt, J. A1 - Hort, N. T1 - Investigation of biodegradation behaviour of an Mg-1Ca alloy influenced by heat treatment and applying plasma-chemical oxidation layers N2 - The degradation behaviour of an Mg-1Ca alloy is investigated in vitro to figure out the possibilities of influencing the degradation behaviour of such an alloy by applying heat treatment as well as the use of a coating system based on plasma-chemical oxidation. It is shown that an optimised solution annealing (T4-heat treatment) can reduce the degradation rate while an additional ageing between 240 and 300 °C (T6-heat treatment) increases it. A coating generated by plasma-chemical oxidation reduces the degradation rate in the immersion test. Its effect is depending on the former heat treatment of the Mg-1Ca alloy as well as on the parameter during plasma-chemical oxidation. KW - Biodegradation KW - Magnesium alloys KW - Plasma-chemical oxidation KW - Magnesium KW - Thermal treatment KW - Corrosion KW - Electrochemistry PY - 2013 DO - https://doi.org/10.1002/maco.201106433 SN - 0947-5117 SN - 1521-4176 VL - 64 IS - 7 SP - 578 EP - 584 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Katsumi, N. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Ion distribution in concrete overlay, mapped by laser induced breakdown spectroscopy (LIBS), modified by an embedded zinc anode N2 - Galvanic corrosion protection by embedded zinc anodes is an accepted technique for the corrosion protection of reinforcing steel in concrete. Galvanic currents flow between the zinc anode and the steel reinforcement due to the potential difference that is in the range of a few hundred mV. The ion distribution was studied on two steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied EZ-anode. On both specimens, a zinc anode was embedded and glued to the concrete surface by a geo-polymer-based chloride-free binder. At one specimen, the EZ-anode was operated for 2,5 years, the EZ-anode at the other specimen was not electrically connected to the reinforcement, this specimen serves as a reference. Both specimens have been stored under identical conditions. The ion distribution between the anode (EZ-ANODE) and cathode (steel reinforcement) was studied by laser-induced breakdown spectroscopy (LIBS) after 7 months, 12 months, and 2,5 years. Results of the LIBS studies on the specimen with activated EZ-anode after 7 months, 12 months, and 2,5 years and of the reference specimen after 2,5 years are reported. Results show that diffusion of ions contributes to the changes in the ion distribution but migration, especially of chlorides towards the EZ-anode is significant despite the weak electric field – several hundred millivolts - generated by the galvanic current. Results show that chloride ions accumulate near the zinc-anode as in water-insoluble zinc-hydroxy chlorides - Simonkollite. T2 - ICCRRR 2022 CY - Capetown, South Africa KW - Corrosion KW - LIBS KW - Zinc KW - Anode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560576 DO - https://doi.org/10.1051/matecconf/202236404023 SN - 2261-236X VL - 364 SP - 1 EP - 7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-56057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Jurgelucks, B. A1 - Prager, Jens A1 - Walther, A. T1 - Defect reconstruction in a two-dimensional semi-analytical waveguide model via derivative-based optimization N2 - This paper considers an indirect measurement approach to reconstruct a defect in a two-dimensional waveguide model for a non-destructive ultrasonic inspection via derivative-based optimization. The propagation of the mechanical waves is simulated by the scaled boundary finite element method that builds on a semi-analytical approach. The simulated data are then fitted to given data associated with the reflected waves from a defect which is to be reconstructed. For this purpose, we apply an iteratively regularized Gauss-Newton method in combination with algorithmic differentiation to provide the required derivative information accurately and efficiently. We present numerical results for three kinds of defects, namely, a crack, delamination, and corrosion. The objective function and the properties of the reconstruction method are investigated. The examples show that the parameterization of the defect can be reconstructed efficiently as well as robustly in the presence of noise. KW - Mechanical waves KW - Corrosion KW - Finite-element analysis KW - Ultrasonic testing KW - Nondestructive testing techniques KW - Symbolic computation KW - Materials analysis KW - MATLAB KW - Newton Raphson method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565485 DO - https://doi.org/10.1121/10.0013574 VL - 152 IS - 2 SP - 1217 EP - 1229 PB - AIP Publ. CY - Melville, NY AN - OPUS4-56548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Grabowski, Sven A1 - Sahrhage, H. A1 - Lampke, T. T1 - Electrochemical corrosion investigations on binary and ternary zinc alloy coatings using gel electrolytes N2 - Novel agar-based test electrolytes are used to perform electrochemical corrosion investigations on ZnFe and ZnNi binary as well as ZnFeMo ternary zinc coatings. The objectives of the electrochemical investigations include the characterization of the corrosion behavior, the description of the protective effect of the coatings as well as the investigation of the layer formation and degradation under artificial aging. ZnFe and ZnFeMo coatings are applied with varying iron content as well as an additional passivation layer, respectively, to study the effect on corrosion resistance. The results show that the protective effect of the coatings is not negatively influenced by different iron contents or the addition of molybdenum. Additional passivation of the ZnFe-containing coatings by means of a passivating agent leads to a significant improvement in the protective effect. Artificial aging leads to slight degradation of the additional passivation layer whereas coatings without post-treatment enhance their protective effect by the formation of corrosion product layers. KW - Binary zinc alloys KW - Ternary zinc alloys KW - Corrosion testing KW - Gel electrolytes KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543013 DO - https://doi.org/10.1002/adem.202101336 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ebell, Gino A1 - Achenbach, R. A1 - Angst, U. A1 - Brem, M. A1 - Dauberschmidt, C. A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Mayer, T.F. A1 - Mietz, Jürgen A1 - Pruckner, F. T1 - Merkblatt B 03 - Elektrochmische Potentialmessung zur Detektion von Bewehrungsstahlkorrosion N2 - Die Potentialmessung kann zum Auffinden korrosionsaktiver Bereiche neben Stahlbetonbauwerken auch bei Spannbetonbauwerken angewandt werden, die mit Spannstählen im direkten Verbund hergestellt werden. Bei Vorspannsystemen mit metallischen Hüllrohren im nachträglichen Verbund ist eine Aussage über den Korrosionszustand des Hüllrohrs, nicht aber des Spannstahls möglich. Messungen an Spannbetonbauteilen erfordern grundsätzlich die besonderen Kenntnisse eines Spezialisten. KW - Korrosion KW - Potentialfeldmessung KW - Corrosion KW - Concrete PY - 2021 SN - 978-3-947971-16-9 SP - 1 EP - 22 PB - DGZfP CY - Berlin AN - OPUS4-53091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ebell, Gino A1 - Achenbach, R. A1 - Angst, U. A1 - Dauberschmidt, C. A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Kosalla, M. A1 - Mayer, T.F. A1 - Mietz, Jürgen A1 - Pruckner, F. A1 - Sodeikat, C. T1 - Specification B 12 - Corrosion monitoring in reinforced and prestressed concrete structures N2 - This specification describes how corrosion monitoring is used to check the condition of reinforced and prestressed concrete members. In this specification, the term "corrosion monitoring" covers all methods in which it is possible to continuously track corrosion-relevant variables in the area of stationary, built-in sensors. This specification does not cover other possible methods, such as potential field measurements, involving the use of mobile, portable sensors that are placed temporarily on the membersurface to take measurements. KW - Korrosion KW - Corrosion KW - Monitoring PY - 2021 SN - 978-3-947971-14-5 SP - 1 EP - 55 PB - DGZfP CY - Berlin AN - OPUS4-53092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valet, Svenja A1 - Burkert, Andreas A1 - Ebell, Gino A1 - Babutzka, Martin T1 - Determination of the corrosion product layer resistance on zinc and electrolytically galvanized steel samples by using gel electrolytes N2 - Although zinc and zinc coatings have been widely used for corrosion protection for decades new zinc coatings are constantly being developed. Characterizing the corrosion protectiveness of these new coatings, however, should not be underestimated. While exposure tests are time intensive, cyclic tests can only be used for a very limited field of application. Thus, electrochemical measurements provide both an efficient and an effective alternative. Conventional aqueous bulk electrolytes influence the surface layers of a tested zinc coating and are therefore not reliable. Gel electrolytes, however, have evolved over the last few years, are minimally invasive and provide reliable results. This work describes experiments with gel electrolytes made of agar. Unlike previous work, it proposes a composition of gel electrolyte for minimally invasive description of the protective power of naturally formed oxide layers on zinc and zinc coatings. Therefore, as a first part, the gel electrolyte made of agar is verified as a method for zinc and zinc-coated samples. Afterwards, this paper introduces the corrosion product layer resistance RL as a promising parameter to evaluate the protective power of zinc coatings. Results are verified with EIS and FTIR measurements. An example on a representative zinc coating demonstrates the practical application. KW - Gel electrolytes KW - Agar KW - Zinc coatings KW - Atmospheric exposure KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526053 DO - https://doi.org/10.1016/j.electacta.2021.138191 SN - 0013-4686 VL - 385 SP - 138191 PB - Elsevier Ltd. AN - OPUS4-52605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Poltavtseva, M. A1 - Mietz, Jürgen ED - Ottosen, L. T1 - Electrochemical investigation of carbon-based conductive coatings for application as anodes in ICCP system of reinforced concrete structures N2 - Carbon-based conductive coatings are complex composites, consisting of an organic or inorganic binder and conductive carbon components, for application as anodes in impressed current cathodic protection systems of reinforced concrete structures. The electrochemical properties of three coatings at different humidity and in saturated calcium hydroxide solution were studied by electrochemical methods, such as electrochemical impedance measurement, measuring of open circuit potential over time and galvanostatic polarization. T2 - International RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016 CY - Lyngby, Denmark DA - 21.08.2016 KW - ICCP KW - Coating KW - Cunductive KW - Corrosion KW - reinforcement KW - Concrete KW - Cathodic protection PY - 2016 SN - 978-2-35158-176-6 SN - 978-2-35158-177-3 VL - Proceedings PRO 111 SP - 43 EP - 46 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-37216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Fischer, Joachim A1 - Lehmann, Jens A1 - Müller, Thoralf A1 - Meinel, Dietmar A1 - Paetsch, O. T1 - Investigation of chloride-induced pitting corrosion of steel in concrete with innovative methods N2 - The combination of electrochemical and 3D computed tomography (CT) investigations offers the possibility of verifying electrochemical measurements non-destructively. Determining the steel surfaces damaged by pitting corrosion allows developing specimens having damage pattern corresponding to practice. Corrosion phenomena like decoupled pitting corrosion cannot be verified by electrochemical measurements only, but with the combination of those two kinds of investigations it is possible. Another advantage is the minimization of the number of samples. The classical experimental procedure requires the destruction of samples after each damage step.This can be avoided by the use of 3D computed tomography. As long as the corrosion phenomena are completely within the examination zone shown by the 3D computed tomography, the electrochemical measurements can be calculated on an area basis to get the specific corrosion rate or polarization resistance. KW - Corrosion KW - Concrete KW - 3D x-ray KW - Corrosion rate PY - 2016 DO - https://doi.org/10.1002/maco.201608969 SN - 1521-4176 SN - 0947-5117 SN - 0043-2822 VL - 67 IS - 6 SP - 583 EP - 590 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-36341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bosch, R.-W. A1 - Cottis, R.A. A1 - Csecs, K. A1 - Dorsch, T. A1 - Dunbar, L. A1 - Heyn, Andreas A1 - Huet, F. A1 - Hyökyvirta, O. A1 - Kerner, Z. A1 - Kobzova, A. A1 - Macak, J. A1 - Novotny, R. A1 - Öijerholm, J. A1 - Piippo, J. A1 - Richner, R. A1 - Ritter, S. A1 - Sánchez-Amaya, J.M. A1 - Somogyi, A. A1 - Väisänen, S. A1 - Zhang, W. T1 - Reliability of electrochemical noise measurements: Results of round-robin testing on electrochemical noise N2 - Sixteen laboratories have performed electrochemical noise (EN) measurements based on two systems. The first uses a series of dummy cells consisting of a 'star' arrangement of resistors in order to validate the EN measurement equipment and determine its baseline noise performance, while the second system, based on a previous round-robin in the literature, examines the corrosion of aluminium in three environments. All participants used the same measurement protocol and the data reporting and analysis were performed with automatic procedures to avoid errors. The measurement instruments used in the various laboratories include commercial general-purpose potentiostats and custom-built EN systems. The measurements on dummy cells have demonstrated that few systems are capable of achieving instrument noise levels comparable to the thermal noise of the resistors, because of its low level. However, it is of greater concern that some of the instruments exhibited significant artefacts in the measured data, mostly because of the absence of anti-aliasing filters in the equipment or because the way it is used. The measurements on the aluminium samples involve a much higher source noise level during pitting corrosion, and most (though not all) instruments were able to make reliable measurements. However, during passivation, the low level of noise could be measured by very few systems. The round-robin testing has clearly shown that improvements are necessary in the choice of EN measurement equipment and settings and in the way to validate EN data measured. The results emphasise the need to validate measurement systems by using dummy cells and the need to check systematically that the noise of the electrochemical cell to be measured is significantly higher than the instrument noise measured with dummy cells of similar impedance. KW - Electrochemical noise KW - Round-robin KW - Corrosion PY - 2014 DO - https://doi.org/10.1016/j.electacta.2013.12.093 SN - 0013-4686 SN - 1873-3859 VL - 120 SP - 379 EP - 389 PB - Elsevier Science CY - Kidlington AN - OPUS4-30284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ehrig, Karsten A1 - L'Hostis, V. A1 - Muzeau, B. A1 - Paetsch, O. T1 - Examination of damage processes in concrete with CT N2 - In order to extend the lifetime of buildings and constructions at the macro scale it is necessary to understand the damage processes of building materials at the micro scale. In particular, durability of reinforced concrete structures is one of the most important equirements for construction planning and restoration of buildings. Therefore degradation mechanisms were reproduced on laboratory specimens. CT (Computed Tomography) is commonly used for non-destructive microstructural defect analysis for recurring tests on concrete specimens. In this work a few examples of CT applications on cementitious materials (including cement paste, mortar and concrete specimens) will be presented. Firstly, in order to quantify the degradation processes, specimens analysed were damaged by corrosion due to carbonation and due to chloride ingress. Particular focus has been set to the analysis of cracks. An automated crack detection tool, developed by Zuse Institut Berlin (ZIB) and BAM in ZIBAmira, has been applied for quantitative analysis of crack parameters and 3D visualization of cracks. Furthermore the distribution of corrosion products has been evaluated inside the cement matrix and visualized in 3D data sets. Another important factor for the ageing stability of concrete is the interfacial transition zone (ITZ). The ITZ consists of a layer of cement paste (20 to 40 μm) over every aggregate where porosity is generally increased in comparison with the bulk. This zone could be a preferential zone for transfer of aggressive species. To visualize the ITZ, a small sample of mortar with a diameter of 10mm has been prepared and scanned using the industrial μCT setup at BAM with a spatial resolution of 5μm voxel size. In addition the extracted surface of aggregates could be used for load simulations. We finally show how CT examination of drilled samples taken from building materials in conjunction with laboratory experiments is helpful for further evaluations of damage processes in concrete. T2 - Conference on industrial computed tomography (ICT) 2014 CY - Wels, Austria DA - 25.02.2014 KW - X-ray computed tomography KW - Concrete KW - Corrosion KW - Crack detection KW - 3D visualization PY - 2014 SN - 978-3-8440-2557-6 SN - 1610-4773 SP - 111 EP - 122 PB - Shaker Verlag GmbH AN - OPUS4-30332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Effect of heat treatment of injection pipe steels on the reliability of a saline aquifer water CCS-site in the Northern German basin N2 - Samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16-4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2- saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 to 670 °C and pits - indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to this particular CCS-site. T2 - GHGT-12 - Greenhouse gas control technologies conference CY - Austin, TX, USA DA - 05.10.2014 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-319433 DO - https://doi.org/10.1016/j.egypro.2014.11.609 SN - 1876-6102 N1 - Serientitel: Energy Procedia – Series title: Energy Procedia VL - 63 SP - 5762 EP - 5772 PB - Elsevier Ltd. AN - OPUS4-31943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirmaier, L. A1 - Bender, S. A1 - Heyn, Andreas T1 - Test of resilience - Electrochemical corrosion investigations identify zinc-free anticorrosive pigments N2 - Development of anti-corrosive pigments for diverse coating systems is both time-consuming and costly, due to the necessary climatic testing, such as testing under salt spray exposure. To accelerate work on a new zinc-free pígment with improved protection, modern, electrochemical investigation methods have been used successfully and verified using traditional tests. KW - Corrosion KW - Protection KW - Coating KW - Anticorrosive KW - Pigments KW - Development KW - Electrochemical KW - Noise PY - 2014 SN - 0930-3847 IS - 6 SP - 18 EP - 22 PB - Vincentz CY - Hannover AN - OPUS4-30928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Heyn, Andreas A1 - Fenker, M. A1 - Balzer, Martin T1 - Investigation on defect morphology and corrosion behaviour of TiMgN hard coatings on steel substrate N2 - Nitride hard coatings, such as Titanium nitride and chromium nitride coatings are widely used for applications focussing on wear protection and decorative purposes. Also these coatings are often applied on low alloyed steel substrates. The inevitable contact of the coated components with the environment through pores and coating defects bears the danger of corrosion of the steel substrate followed by further delamination of the coating and a loss of function of the component. A new attempt to increase the corrosion behaviour of those physically deposited hard coating systems is the implementation of magnesium. The positive effect of magnesium could be verified already electrochemically. Performed experiments on TiMgN have shown that corrosion resistance could drastically improved with increasing Mg content of the TiMgN up to 30 at% compared to steel substrates with applied titanium nitride hard coatings. Besides the clarification of the electrochemical and phenomenological effect of the magnesium on the corrosion behaviour, an additional aim of this work is the investigation of the coating defects, defect morphologies and their influence on the local corrosion behaviour. For this the incorporation of the magnesium and its effects on the coating material, the influence of coating growth related defects and the effect of the coating structure on the corrosion behaviour should be experimental examined by using innovative surface and material analysis methods such as FIB and TEM. Furthermore the evolution of the coating defects should be investigated by combing confocal microscopy with a new developed exposure test method using the electrochemical indication test KorroPad. The function of the KorroPad test, which was developed and patented [1] at the BAM for the detection of corrosion sensitive steel surfaces by indicating dissolution of iron ions [1], allows the detection and identification of critical coating defects for further microscopic investigation. Additional to that the KorroPad test simulates an accelerated exposure test by simultaneous absence of the disadvantages of typical short time exposure test like salt spray tests. Thus it allows a monitoring and analysis of the evolution of the critical coating defects and their influence on the local corrosion behaviour and the overall corrosion mechanisms. The results of this work should contribute to the development of new hard coatings with improved corrosion protection properties and also to a better understanding of the corrosion mechanisms of coated steel substrates. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Metallic coatings KW - Cathodic protection KW - Corrosion PY - 2014 SN - 978-3-89746-159-8 SP - O EP - 7473, 384 AN - OPUS4-31482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Investigation of chloride-induced pitting corrosion of steel in concrete by a combination of electrochemical methods with X-ray tomography N2 - Steel in concrete is protected by the alkaline pore water environment and the resulting formation of a protective passive layer against corrosion. Adverse environmental conditions due to carbonation or chloride ingress can destroy the passive layer on the steel surface. Corrosion processes starting in those areas lead to uniform corrosion or local corrosion like pitting corrosion. In comparison to uniform corrosion pitting corrosion is a form of increased local corrosion and thus leads to a progressive reduction in cross-section of the reinforcing steel. The corrosion products are first absorbed by the pores of the concrete matrix, without causing visible external changes at the concrete surface. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Corrosion KW - Rebar KW - Chloride KW - Pitting corrosion PY - 2014 SN - 978-3-89746-159-8 SP - O-7207, 274-275 AN - OPUS4-31431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zunkel, Astrid A1 - Tiebe, Carlo A1 - Schlischka, Jörg T1 - “Stolt Rotterdam” - The sinking of an acid freighter N2 - The Stolt Rotterdam tanker ship, filled with nitric acid, was unloading at the Krefeld-Uerdingen terminal on the Rhine River in November 2001. Nitric acid ran out of the stainless steel tanks into the ship's hull and damaged the structural steel. The ship then caught fire and sank at the terminal. Large quantities of nitrogen oxides were emitted, which drifted towards a residential area. Additionally, a mixture of acid and water was introduced into the Rhine River. The area became hazardous to people and the natural environment; however, the imminent danger for the residents and the environment was reduced because of the protective measures against pollution and the good teamwork between local authorities, fire brigades and the Bayer AG company. The acid was drained off of the ship using a controlled discharge of the acid into the river. Through the use of this measure, the ship was salvaged, limiting the pollution to the area and removing the health hazards to the people and the environment. After the ship was salvaged, the river police, along with assistance from the BAM Federal Institute for Materials Research and Testing, impounded the ship and selected corroded parts for further examination. Some of these components have been examined in detail by the BAM. These material investigations contributed to the elucidation of the origin of the leak in the floor panel. The cause of damage was deemed to be a result of a construction flaw at the enamelled valve on the load and discharge pipes. The results from the comparative corrosion testing using the original structural steel and 60% acid revealed that the valves began to leak at least 8 h prior to the incident at the terminal. KW - Freighter KW - Nitric acid KW - Corrosion KW - Valve KW - Flat gasket PY - 2014 DO - https://doi.org/10.1016/j.engfailanal.2014.03.002 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 221 EP - 231 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klein, Ulrich A1 - Zunkel, Astrid A1 - Eberle, Arno T1 - Breakdown of heat exchangers due to erosion corrosion and fretting caused by inappropriate operating conditions N2 - Damage analyses on two heat exchanger units showed that in both cases inappropriate flow conditions of media caused very different failure mechanisms that resulted in irreparable damage. The first incident was the breakdown of an unalloyed steel condenser, which operated in a coal-fired power plant. A considerably high number of tubes successively leaked. Metallography identified lines of segregation in the microstructure of the tube walls, thus, giving evidence that both uniform corrosion and erosion corrosion caused by low-pressure wet steam were the root cause. The second incident was the breakdown of a recuperator made from chromium–nickel steel due to mechanical damage to tubes and baffle. This unit operated as part of a pilot plant to regain heat from the drying process of sewage sludge. It turned out that soiled vapour caused clogging of the cross-sectional area and therefore accelerating the flow velocity of the vapour. This inappropriate operating condition caused the tubes to oscillate so severely that they even banged together. Abrasive wear especially at the intersection through the holes of the baffle damaged the tubes and the whole unit irreparably. KW - Corrosion KW - Condenser KW - Recuperator KW - Soiled media KW - Leakage of tubes PY - 2014 DO - https://doi.org/10.1016/j.engfailanal.2014.03.019 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 271 EP - 280 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stoppel, Markus A1 - Fakhouri, A. ED - Grantham, M. ED - Basheer, P. A. M. ED - Magee, B. ED - Soutsos, M. T1 - Suitability of embedded RFID-sensors for concrete bridge structures T2 - Concrete Solutions 2014 CY - Belfast, UK DA - 2014-09-01 KW - NDT KW - Embedded sensors KW - RFID KW - Moisture measurement KW - Corrosion PY - 2014 SN - 978-1-138-02708-4 SP - 1 EP - 6(?) PB - CRC Press AN - OPUS4-31723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Effects of saline aquifere water on the corrosion behaviour of injection pipe steels 1.4034 and 1.7225 during exposure to CO2 environment N2 - CO2-corrosion of injection pipe steels is a relevant safety issue when emission gasses are compressed in deep geological layers (CCS). The reliability of the steels used at the geological onshore CCS-site at Ketzin, Germany, is demonstrated in laboratory experiments under an equivalent corrosive environment (T=60 °C,p=1-60 bar, aquifer water, CO2-flow rate of 3 l/h, 700 h–8000 h heat treatment). Corrosion kinetics and microstructures were characterized using samples of the heat treated steel 1.7225 (AISI 4140, 42CrMo4) used for casing, and samples of the martensitic stainless injection-pipe steel 1.4034 (AISI 420, X46Cr13). KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - CO2-injection KW - CO2-storage PY - 2009 DO - https://doi.org/10.1016/j.egypro.2009.02.080 SN - 1876-6102 VL - 1 IS - 1 SP - 3023 EP - 3029 PB - Elsevier CY - Amsterdam AN - OPUS4-19393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mikó, Annamária A1 - Erning, Johann Wilhelm A1 - Schlerkmann, H. A1 - Mathiesen, T. T1 - Comparative investigation of stainless steels used in drinking water distribution systems N2 - Five stainless steel alloys were tested and compared to find a test method for the qualification of stainless steel used in drinking water systems. Determination of the pitting/critical potentials from the conventional cyclic polarization results was shown to be difficult when stainless steels have high Mo and Cr content. The electrochemical impedance data indicated that results received with the conventional methods do not necessarily reflect the steady state. The low frequency time constant determined from the impedance measurements showed that the anodic polarization should be conducted with very slow scan rate to get information about the mechanism. The steady state investigations were compared with the conventional electrochemical results to propose an electrochemical-based route as a standard qualification method. The qualification method was tested to be valid by a European round-robin-test. KW - Drinking water KW - Stainless steel KW - Passivity KW - Corrosion KW - Test method for stainless steel PY - 2009 DO - https://doi.org/10.1016/j.electacta.2009.08.003 SN - 0013-4686 SN - 1873-3859 VL - 54 IS - 28 SP - 7507 EP - 7513 PB - Elsevier Science CY - Kidlington AN - OPUS4-20132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Reichling, K. A1 - Raupach, M. A1 - Wiggenhauser, Herbert A1 - Stoppel, Markus A1 - Dobmann, G. A1 - Kurz, J. ED - Odile Abraham, ED - Dérobert, Xavier T1 - BETOSCAN - Robot controlled non-destructive diagnosis of reinforced concrete decks T2 - NDTCE `09 - 7th international symposium on non destructive testing in civil engineering CY - Nantes, France DA - 2009-06-30 KW - BetoScan KW - Betonflächendiagnose KW - Scanner KW - ZfP im Bauwesen KW - Automation KW - Corrosion KW - Potential mapping KW - Repair KW - Non destructive testing KW - Diagnosis PY - 2009 SN - 978-2-7208-2542-5 SN - 1628-4704 IS - Paper 77 SP - 425 EP - 432 AN - OPUS4-22487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichling, K. A1 - Raupach, M. A1 - Wiggenhauser, Herbert A1 - Stoppel, Markus A1 - Dobmann, G. A1 - Kurz, J. T1 - BETOSCAN - A robotic system for simultaneous diagnoses of reinforced concrete structures T2 - NUCPERF 2009 - Long term performance of cementitious barriers and reinforced concrete in nuclear power plants and waste management CY - Cadarache, France DA - 2009-03-30 KW - Diagnosis KW - Steel KW - Reinforced concrete KW - BetoScan KW - Betonflächendiagnose KW - Scanner KW - ZfP im Bauwesen KW - Non destructive testing KW - Corrosion PY - 2009 SN - 978-2-35158-072-1 N1 - Serientitel: RILEM proceedings – Series title: RILEM proceedings IS - 64 SP - 1 EP - 7(?) PB - RILEM Publ. CY - Bagneux AN - OPUS4-22485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westin, E. M. A1 - Stelling, Karen A1 - Gumenyuk, Andrey T1 - Single-pass laser-GMA hybrid welding of 13.5 mm thick duplex stainless steel N2 - Single-pass solid-state laser welding of plates in the thickness range of 10 to 20 mm became possible with the invention of the fibre laser. This new technique provides excellent beam quality at powers as high as 20 kW or more, and has proved applicable in several industrial applications. By replacing conventional methods with the fibre laser, it is possible to avoid multiple-pass welding that requires time-consuming bevelling. The high energy density of the fibre laser beam also reduces the heat input and consequently the distortion. However, the rapid solidification and cooling associated with laser welding can cause imbalance of the microstructure of duplex stainless steel weldments, where excessively high ferrite contents may reduce the corrosion resistance and the ductility of the material. The solution is normally to add nickel-based filler wire and to increase the heat input. By using a hybrid welding process where the laser beam and the gas metal arc (GMA) process act in a common process zone, filler metal can be added to the molten pool at higher heat input and at the same time, higher welding speed and deeper penetration can be achieved. In this work, 13.5 mm thick 2205 (EN 1.4462, UNS S31803) was fibre laser-GMA hybrid welded in a single-pass using 14 kW of laser power and ISO 22 9 3 N L as filler wire for the GMA process. The resulting welds were free from defects, with smooth surfaces and full penetration. The investigation examines the weld metal microstructure and the effect on corrosion resistance and mechanical properties. The option to add nickel foil, when hybrid welding, was also investigated, as comparison, and the effect on austenite formation was evaluated. KW - Austenite KW - Combined processes KW - Corrosion KW - Duplex stainless steels KW - Laser welding KW - Microanalysis KW - Weld metal KW - Weldability KW - Welding PY - 2011 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 1/2 / IIW-2028-09 SP - 39 EP - 49 PB - Springer CY - Oxford AN - OPUS4-23476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Linke, Barbara A1 - Kranzmann, Axel T1 - Corrosion behaviour of pipe steels exposed for 2 years to CO2 -saturated saline aquifer environment similar to the CCS-site Ketzin, Germany N2 - When emission gasses are compressed into deep geological layers (CCS) CO2-corrosion of injection pipe steels is a relevant safety issue. The reliability of the steels used at the geological onshore CCS-site at Ketzin, Germany, is demonstrated in 2 years laboratory experiments under an equivalent corrosive environment at ambient pressure (T=60 °C, aquifer water, CO2-flow rate of 3 l/h). Corrosion kinetics and microstructures were characterized using samples of the heat treated steel 42CrMo4 (casing), and samples of the martensitic stainless steel X46Cr13 (injection). KW - Steel KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2011 SN - 1876-6102 VL - 4 SP - 5122 EP - 5129 PB - Elsevier CY - Amsterdam AN - OPUS4-23621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raupach, M. A1 - Reichling, K. A1 - Wiggenhauser, Herbert A1 - Stoppel, Markus A1 - Dobmann, G. A1 - Kurz, J. ED - M.G. Alexander, ED - H.-D. Beushausen, ED - F. Dehn, ED - P. Moyo, T1 - BETOSCAN - An instrumented mobile robot system for the diagnosis of reinforced concrete floors T2 - 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 2008-11-24 KW - Corrosion KW - Diagnosis KW - Steel KW - Concrete KW - Reinforcement KW - NDT KW - Automated testing KW - Onsite scanner KW - Ultrasonic echo KW - Radar KW - Damage assessment KW - Damage analysis KW - Betoscan PY - 2009 SN - 978-0-415-46850-3 SP - 651 EP - 655 PB - CRC Press CY - Boca Raton AN - OPUS4-18668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Influence of CO2 on the corrosion behaviour of 13%Cr martensitic stainless steel AISI 420 and low alloyed steel AISI 4140 exposed to saline aquifer water environment T2 - International Conference on Environment 2008 (ICENV 2008) - Environmental Management and Technologies Towards Sustainable Development CY - Penang, Malaysia DA - 2008-12-15 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - CO2-injection KW - CO2-storage PY - 2008 SN - 978-983-3986-39-2 SP - 1 EP - 9 AN - OPUS4-18669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pohl, K. A1 - Özcan Sandikcioglu, Özlem A1 - Voigt, M. A1 - Grundmeier, G. T1 - Adhesion and corrosive delamination of epoxy films on chemically etched ZnMgAl-alloy coatings N2 - The effect of alkaline and acidic pretreatment steps on the surface chemical composition and adhesion properties of ZnMgAl-alloy coated steel was investigated by means of spectroscopic methods, scanning Kelvin probe (SKP) and peel test measurements.The spectroscopic results indicate that the surface film composition can be adjusted by the wet-chemical treatment. To study the corresponding surface adhesive properties, the samples were coated with an epoxy amine adhesive. Peel tests under humid conditions indicated an increased interaction between the acidic pre-treated surface and the adhesive. The results of the SKP analysis show that the acidic cleaned substrates have the highest resistance to delamination, which can be explained by the shift of the interfacial electrode potential. KW - Corrosion KW - ZnMgAl-alloy coatings KW - XPS KW - Scanning Kelvin probe PY - 2016 DO - https://doi.org/10.1002/maco.201608968 SN - 0947-5117 SN - 1521-4176 VL - 67 IS - 10 SP - 1020 EP - 1026 AN - OPUS4-38196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Saldabilita di lamiere in acciaio inossidabile austenico ed austeno-ferritico ad alto contenuto di manganese con processo laser N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fl uctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefi ts regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with Standard CrNi steels. Main emphasis was laid on fi nding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint confi gurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The infl uence of the shielding gas type and fl ow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Weldability KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers PY - 2016 SN - 0035-6794 VL - 68 IS - 1 SP - 33 EP - 43 AN - OPUS4-38100 LA - ita AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glenn, A.M. A1 - Hughes, A.E. A1 - Torpy, A. A1 - Nolze, Gert A1 - Birbilis, N. T1 - Defect density associated with constituent particles in AA2024-T3 and its role in corrosion N2 - Electron backscatter diffraction (EBSD) and scanning electron microscopy were combined to study the effect of residual defect density on corrosion initiation in aluminium alloy AA2024-T3. EBSD was used to determine the level of misorientation (MO), from pixel to pixel, within individual grains. The MO can be determined with respect to either the average orientation angle of the grain or with respect to the average orientation angle of the surrounding pixels (in this instance, a matrix of 7×7 surrounding pixels has been applied). Herein, the MO, determined using the surrounding pixels, was used as the means for the assessing the level of defect density within a grain. It was found that there was a noteworthy, but not definitive, correlation of MO with corrosion initiation after 1 min exposure to 0.1 M NaCl solution. Additionally, the S and θ-phase particles were also identified using EBSD, displaying a range of MO and therefore defect density. KW - Al-alloy KW - S-phase KW - EBSD KW - Corrosion KW - AA2024-T3 KW - Defect density PY - 2016 DO - https://doi.org/10.1002/sia.5813 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 8 (SI) SP - 780 EP - 788 PB - Wiley CY - Chichester AN - OPUS4-34476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Schiz, J. A1 - Kranzmann, Axel ED - Jha, A. ED - Wang, C. ED - Neelameggham, N.R. ED - Guillen, D.P. ED - Li, L. ED - Belt, C.K. ED - Kirchain, R. ED - Spangenberger, J.S. ED - Johnson, F. ED - Gomes, A.J. ED - Pandey, A. ED - Hosemann, P. T1 - The role of austenitizing routines of pipe steels during CCS N2 - Properties of pipe steels for CCS technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitizing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900 – 1050 °C) for different lengths of time (30–90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitizing time KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Austenitizing PY - 2015 SN - 978-1-119-08240-8 DO - https://doi.org/10.1002/9781119093220.ch15 SP - 131 EP - 137 PB - Wiley AN - OPUS4-34924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Consideration of aging mechanism influence on transport safety of dual purpose casks for spent nuclear fuel of HLW N2 - When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. KW - Transport KW - Storage KW - Spent fuel KW - High-level waste KW - Aging KW - Metal seals KW - Transport and storage casks KW - Spent nuclear fuel KW - Aging mechanisms KW - Corrosion KW - Safety assessment PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000070 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 105 EP - 112 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tissot, I. A1 - Troalen, L.G. A1 - Manso, M. A1 - Ponting, M. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Barreiros, M. A. A1 - Shaw, I. A1 - Carvalho, M.L. A1 - Guerra, M.F. T1 - A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion N2 - Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (µXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D²XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. KW - Gold KW - Egypt KW - PGE KW - Provenance KW - Corrosion KW - muXRF KW - muPIXE KW - D2XRF KW - SEM-EDS PY - 2015 DO - https://doi.org/10.1016/j.sab.2015.03.012 SN - 0584-8547 SN - 0038-6987 VL - 108 SP - 75 EP - 82 PB - Elsevier CY - Amsterdam AN - OPUS4-33155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poltavtseva, Marina A1 - Ebell, Gino A1 - Mietz, Jürgen T1 - Electrochemical investigations of carbon-based conductive coatings for application as anodes in ICCP systems of reinforced concrete structures N2 - Carbon-based conductive coatings are complex composites, consisting of an organic or inorganic binder and conductive carbon components, for application as anodes in impressed current cathodic protection systems of reinforced concrete structures. The electrochemical properties of three coatings at different humidity and in saturated calcium hydroxide solution were studied by electrochemical methods, such as electrochemical impedance measurement, measuring of open circuit potential over time and galvanostatic polarization. The dissolved organic and inorganic carbons in electrolyte solution were quantified by using a photometric method. The structures of the coatings were investigated before and after the electrochemical tests by microscopy and scanning electron microscope/EDX analysis. The results of the electrochemical impedance measurements show that the tested coatings all have a relatively low resistance, which is between 100 and 200 Ω. The binder and the surface porosity influence the degradation behavior of those coatings. Especially the organic binder reacts with the strong alkaline medium under dissolving of organic carbon. KW - Cathodic protection KW - Corrosion KW - Rebar KW - Reinforcement KW - Concrete KW - Potential PY - 2015 DO - https://doi.org/10.1002/maco.201407680 SN - 0947-5117 SN - 1521-4176 VL - 66 IS - 7 SP - 627 EP - 634 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-33709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Pérez, P. A1 - Adeva, Paloma T1 - Properties of WZ21 (%wt) alloy processed by a powder metallurgy route N2 - Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt.) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 µm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. KW - Magnesium KW - RE KW - Microstructure KW - Creep KW - Corrosion PY - 2015 DO - https://doi.org/10.1016/j.jmbbm.2015.02.022 SN - 1751-6161 SN - 1878-0180 VL - 46 SP - 115 EP - 126 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-32704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paetsch, O. A1 - Baum, D. A1 - Ebell, Gino A1 - Ehrig, Karsten A1 - Heyn, Andreas A1 - Meinel, Dietmar A1 - Prohaska, S. T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben N2 - Durch die Alkalität des Betons wird Betonstahl dauerhaft vor Korrosion geschützt. Infolge von Chlorideintrag kann dieser Schutz nicht länger aufrechterhalten werden und führt zu Lochkorrosion. Die zerstörungsfreie Prüfung von Stahlbetonproben mit 3D-CT bietet die Möglichkeit, eine Probe mehrfach gezielt vorzuschädigen und den Korrosionsfortschritt zu untersuchen. Zur Quanti-fizierung des Schädigungsgrades müssen die bei dieser Untersuchung anfallenden großen Bilddaten mit Bildverarbeitungsmethoden ausgewertet werden. Ein wesent-licher Schritt dabei ist die Segmentierung der Bilddaten, bei der zwischen Kor-rosionsprodukt (Rost), Betonstahl (BSt), Beton, Rissen, Poren und Umgebung unterschieden werden muss. Diese Segmentierung bildet die Grundlage für sta-tistische Untersuchungen des Schädigungsfortschritts. Hierbei sind die Änderung der BSt-Geometrie, die Zunahme von Korrosionsprodukten und deren Veränderung über die Zeit sowie ihrer räumlichen Verteilung in der Probe von Interesse. Auf-grund der Größe der CT-Bilddaten ist eine manuelle Segmentierung nicht durch-führbar, so dass automatische Verfahren unabdingbar sind. Dabei ist insbesondere die Segmentierung der Korrosionsprodukte in den Bilddaten ein schwieriges Problem. Allein aufgrund der Grauwerte ist eine Zuordnung nahezu unmöglich, denn die Grauwerte von Beton und Korrosionsprodukt unterscheiden sich kaum. Eine formbasierte Suche ist nicht offensichtlich, da die Korrosionsprodukte in Beton diffuse Formen haben. Allerdings lässt sich Vorwissen über die Ausbreitung der Korrosionsprodukte nutzen. Sie bilden sich in räumlicher Nähe des BSt (in Bereichen vorheriger Volumenabnahme des BSt), entlang von Rissen sowie in Porenräumen, die direkt am BSt und in dessen Nahbereich liegen. Davon ausgehend wird vor der Korrosionsprodukterkennung zunächst eine BSt-Volumen-, Riss- und Porenerken-nung durchgeführt. Dieser in der Arbeit näher beschriebene Schritt erlaubt es, halb-automatisch Startpunkte (Seed Points) für die Korrosionsprodukterkennung zu finden. Weiterhin werden verschiedene in der Bildverarbeitung bekannte Algorithmen auf ihre Eignung untersucht werden. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Korrosion KW - Corrosion KW - CT KW - Computertomographie KW - 3D KW - Stahlbeton KW - Betonstahl KW - Bewehrung KW - Lochkorrosion PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325080 UR - http://jt2014.dgzfp.de/portals/jt2014/BB/di1c3.pdf SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Di.1.C.3, 1 EP - 10 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-32508 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ewert, Uwe T1 - Progress in digital industrial radiology - Part 1: Radiographic techniques-film replacement and backscatter imaging N2 - Similar to the success story of digital photography a major upheaval has been observed in digital industrial radiology. This paper is split into 3 parts: Part 1: Film Replacement and Backscatter Imaging: Computed radiography with phosphor imaging plates substitutes film applications. Digital Detector Arrays enable an extraordinary increase of contrast sensitivity in comparison to film radiography. The increased sensitivity of digital detectors enables the efficient usage for dimensional measurements and functionality tests substituting manual maintenance. The digital measurement of wall thickness and corrosion status is state of the art in petrochemical industry. Photon counting and energy discriminating detectors are applied up to 300 Kv provide increased thickness dynamic and material discrimination by synchronously acquisition of images of the high and low energy part of the spectrum. X-ray back scatter techniques have been applied in safety and security relevant applications with single sided access of source and detector. First inspections of CFRP in aerospace industry were successfully conducted with newly designed back scatter cameras. Numeric modeling is used to design X-Ray optics and inspection scenarios as well as conducting RT training. Part 2: Computed tomography (CT) Part 3: Micro Radiography and Micro CT. KW - Digital radiography KW - Computed tomography KW - Laminography KW - Imaging plates KW - Digital detector arrays KW - Photon counting detectors KW - Back scatter KW - Numeric modelling KW - CFRP KW - Welding KW - Corrosion PY - 2016 VL - 1-2 SP - 37 EP - 43 AN - OPUS4-39163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Corrosion protection mechanisms of TiMgN hard coatings on steel N2 - . Hard coated steel components are used in a wide application range, mostly for protective, wear resistant and decorative purposes. Despite of these coatings being regarded as relatively dense, there is always a high risk of localized corrosion when a coated low alloyed steel component encounters a surrounding high humidity atmosphere or even an aqueous medium. An approach to enhance the corrosion properties is the addition of magnesium to physical vapor deposited hard coatings, like TiN. It has been found that there is a remarkable increase in corrosion resistance in dependence of magnesium content of the TiMgN coating and its surface properties. In this work the authors will explain the underlying corrosion protection mechanisms by means of electrochemical and analytical studies. The positive impact of magnesium in the coating relates on its preferred dissolution vs. steel. This causes the potential to shift to more negative direction with respect to the steel substrate and additionally leads to a temporarily passivation of the steel due to alkalization of the surrounding electrolyte by formation of magnesium hydroxide. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Titanium nitride KW - PVD hard coating KW - Magnesium PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 74 EP - 83 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 277 EP - 284 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heattreated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - WTK2018 CY - Chemnitz DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452482 DO - https://doi.org/10.1088/1757-899X/373/1/012020 SN - 1757-899X SN - 1757-8981 VL - 373 SP - Article 012020, 1 EP - 9 PB - Institute of Physics CY - London AN - OPUS4-45248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Corrosion protection mechanisms of TiMgN hard coatings on steel N2 - Hard coated steel components are used in a wide application range, mostly for protective, wear resistant and decorative purposes. Despite of these coatings being regarded as relatively dense, there is always a high risk of localized corrosion when a coated low alloyed steel component encounters a surrounding high humidity atmosphere or even an aqueous medium. An approach to enhance the corrosion properties is the addition of magnesium to physical vapor deposited hard coatings, like TiN. It has been found that there is a remarkable increase in corrosion resistance in dependence of magnesium content of the TiMgN coating and its surface properties. In this work the authors will explain the underlying corrosion protection mechanisms by means of electrochemical and analytical studies. The positive impact of magnesium in the coating relates on its preferred dissolution vs. steel. This causes the potential to shift to more negative direction with respect to the steel substrate and additionally leads to a temporarily passivation of the steel due to alkalization of the surrounding electrolyte by formation of magnesium hydroxide. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Titanium nitride KW - PVD hard coating KW - magnesium PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457117 DO - https://doi.org/10.1088/1757-899X/373/1/012009 SN - 1757-8981 VL - 373 IS - 1 SP - 012009, 1 EP - 10 PB - IOP Publishing Ltd AN - OPUS4-45711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. A1 - Müller, Thoralf A1 - Heyn, A. A1 - Heiss, A. A1 - Richter, A. T1 - Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: Structure, mechanical properties and growth defect related salt spray test results N2 - Hard and wear resistant coatings deposited by PVD techniques have been characterized for decades for their capabilities to protect steel substrates from corrosion. In the present work the effect of Mg incorporated into TiN coatings is described in terms of the corrosion behavior as well as the mechanical and structural properties. TiN and TiMgN films with Mg contents between 10 and 35 at.% were deposited onto mirror polished 100Cr6 (1.3505) steel samples with 2.5 and 5 μm thickness by using DC magnetron sputtering. The corrosion protection capabilities of the coatings were characterized by neutral salt spray (NSS) test, considering the amounts and sizes of growth defects inherent in each coated sample as determined by a recently developed optical scan method (Large Area High Resolution mapping). The defect data were statistically analyzed for improved interpretation of NSS test results. Chosen growth defects were additionally analyzed by focused ion beam technique. Furthermore the coating composition and morphology, the hardness and the tribological behavior were characterized. Polished steel samples coated with 2.5 μm TiMgN containing about 35 at.% Mg were in the plane free of corrosion after 24 h in a NSS test. TiMgN with 10 or 20 at.% Mg only provided a slightly improved corrosion protection in relation to pure TiN coatings, which was limited to certain types of growth defects. The highest Mg containing coatings exhibited a decreased hardness down to 1200 or 1800 HV depending on type of deposition (HV 1200: Ti- and Mg-target with rotating substrate holder, 1800: Mg-plugged Ti-target with static substrate holder), but also showed a strongly improved wear resistance against Al2O3 related to pure TiN. By analyzing the NSS test results it was found that the corrosion behavior of the coated samples did not only depend strongly on the Mg content, but also on the sample individual defect concentrations. Therefore this subject is extensively discussed. KW - Physical vapour deposition (PVD) KW - Corrosion KW - Growth defects KW - Pinholes KW - Magnesium KW - TiMgN PY - 2018 DO - https://doi.org/10.1016/j.surfcoat.2018.05.037 SN - 0257-8972 VL - 349 IS - 9 SP - 82 EP - 92 PB - Elsevier B.V. AN - OPUS4-45712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Burkert, Andreas ED - Isecke, B. ED - Krieger, J. T1 - Detektion korrosionsaktiver Bereiche an Brückenbauwerken aus Stahlbeton mittels Potentialfeldmessung N2 - Durch das alkalische Porenwassermilieu wird Stahl im Beton durch Ausbildung einer Deckschicht vor Korrosion geschützt. Unter ungünstigen Umgebungsbedingungen (Karbonatisierung, Chlorideintrag) kann die passive Deckschicht auf der Stahloberfläche zerstört werden. Im weiteren Verlauf können sich durch Volumenexpansion der Korrosionsprodukte korrosionsbedingte Folgeschäden, wie Risse und Abplatzungen am Bauwerk ergeben. Um notwendige Sanierungsmaß-nahmen sind frühzeitige und weitgehend zerstörungsfrei ermittelte Informationen über das aktuelle Korrosionsverhalten der Stahlbewehrung von großer Bedeutung. Die Potentialfeldmessung ist ein etabliertes und weit verbreitetes Verfahren zur Beurteilung des Korrosionszustandes der Bewehrung in Stahlbetonbauwerken. Mit Hilfe dieses Verfahrens können Bereiche aktiv korrodierender Bewehrung zerstörungsfrei lokalisiert werden. In der Regel kommt diese Messmethode bei der Detektion chloridinduzierter Korrosion zum Einsatz. T2 - 4. Brückenkolloquium CY - Online meeting DA - 08.09.2020 KW - Korrosion KW - Potentialfeldmessung KW - Corrosion PY - 2020 SN - 978-3-8169-3518-6 SN - 978-3-8169-8518-1 SP - 583 EP - 588 PB - expert CY - Tübingen AN - OPUS4-51218 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Wetzel, Annica A1 - Oczan, Ozlem A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Hydrogen diffusion and local Volta potential in high- and medium-entropy alloys N2 - High-entropy alloys (HEAs) are characterized by a solid solution of minimum five and medium-entropy alloys (MEAs) of minimum three principal alloying elements in equiatomic proportions. They show exceptional application properties, such as high-strength and ductility or corrosion resistance. Future HEA/MEA-components could be exposed to hydrogen containing environments like vessels for cryogenic or high-pressure storage where the hydrogen absorption and diffusion in these materials is of interest. In our study, we investigated the HEA Co20Cr20Fe20Mn20Ni20 and the MEA Co33.3Cr33.3Ni33.3. For hydrogen ingress, cathodic charging was applied and diffusion kinetic was measured by high-resolution thermal desorption spectros-copy using different heating rates up to 0.250 K/s. Peak deconvolution resulted in high-temperature desorption peaks and hydrogen trapping above 280 °C. A total hydrogen concentration > 40 ppm was identified for the MEA and > 100 ppm for HEA. This indicates two important effects: (1) delayed hydrogen diffusion and (2) considerable amount of trapped hydrogen that must be anticipated for hydrogen assisted cracking phenomenon. Local electrochemical Volta potential maps had been measured for the hydrogen free condition by means of high-resolution Scanning Kelvin Probe Force Microscopy (SKPFM). T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Hydrogen KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511684 DO - https://doi.org/10.1088/1757-899X/882/1/012015 VL - 882 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-51168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Müller, Thoralf A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Investigation of the influence of iron‐containing abrasives on the corrosion behaviour of the aluminium alloy AlSi1.2Mg0.4 N2 - The corrosion resistance of aluminium surfaces is closely linked to the surfacecstate after a grinding process. For years, iron‐containing abrasive materials were suspected to lead to increased corrosion susceptibility after processing of aluminium surfaces. To prove a possible correlation between the iron content of an abrasive and the corrosion behaviour of aluminium components, scientific investigations and experimentally practical corrosion tests are necessary. For the current investigation, specimens of a technical Al‐Si alloy from the same batch were used. The test specimens were mechanically ground with various resin‐bonded model abrasives containing different iron contents. The performed corrosion tests did not reveal a negative influence of the different iron‐containing abrasives on the corrosion behaviour of the Al–Si alloy. However, the most sensitive measuring method (electrochemical noise) showed differences in the surface activity depending on the type of abrasive. KW - Aluminium KW - Corrosion KW - Corrosion testing KW - Grinding PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506762 DO - https://doi.org/10.1002/maco.202011657 SN - 0947-5117 SN - 1521-4176 VL - 71 IS - 10 SP - 1667 EP - 1679 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boschmann Käthler, C. A1 - Angst, U. A1 - Ebell, Gino A1 - Elsener, B. T1 - Chloride-induced reinforcement corrosion in cracked concrete: the influence of time of wetness on corrosion propagation N2 - Literature data on the influence of concrete cracks on corrosion propagation of reinforcing steel are contradictory. This might be due to very different exposure and test conditions but also to a lack of time-resolved data in cyclic wetting–drying exposure. Here, the influence of the environmental conditions on the corrosion rates in cracked concrete is studied experimentally. The results show that the corrosion rate in cracked concrete depends on the duration of wetting and drying phases and the relative humidity (RH) during the drying phase. The lower the ambient RH in the drying phase, the faster the cracks dry, which depresses the corrosion rate in the periods between the wetting events. A model is proposed to estimate corrosion rates in cracked concrete cyclic wetting/drying exposure. KW - Korrosion KW - Corrosion KW - Concrete PY - 2020 DO - https://doi.org/10.1080/1478422X.2020.1789371 SP - 1 EP - 11 PB - Taylor Francis Online CY - London AN - OPUS4-50986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Armatys, Kamila A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Pflumm, R. A1 - Galetz, M. C. T1 - Corrosion and abrasion resistant protective coatings for biomass combustion N2 - The environmental concerns about availability of fossil fuels and greenhouse gas effect increase and alternative renewable fuels for power plants are gaining significantly of importance. One of the alternative renewable fuels is biomass but it is a difficult fuel because of its diversity and complexity. It can contain high percentages of K and Cl responsible for corrosion together with sand that have additionally an abrasive effect during combustion. Because of permanently extending the surface reaction due to abrasion the corrosion of the materials increases. In particular in power plants, the superheater tubes are exposed to a corrosive abrasive attack that is one of the main sources of concern. The development of new alloys for multilayer surface, which combines corrosive and abrasive resistance is therefore of high importance. Those new technical approaches must be at the same time cost-effective to be an alternative to conventional materials. This paper presents the principle of experimental methods developed for the investigations of high temperature corrosion combined with abrasion in thermochemical processes with high hydrochloric acid concentrations like during biomass combustion. The aim of the presented investigation methods it to test and develop suitable alloys for coatings for the super heater tubes of biomass power plants. First results of abrasion investigations show improved abrasion resistance compared to the multi-component reference material Alloy 625. T2 - Young Researchers Conference: Energy Efficiency & Biomass CY - Wels, Austria DA - 24.02.2016 KW - Corrosion KW - Coatings PY - 2016 SP - 1 EP - 9 CY - Proceedings in Young Researchers Conference: Energy Efficiency & Biomass 2016 AN - OPUS4-35714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Straub, F. A1 - Wirth, Thomas A1 - Holzlechner, G. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Real Time Imaging of Deuterium in a Duplex Stainless Steel Microstructure by Time-of-Flight SIMS N2 - For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found. KW - Characterization and analytical techniques KW - Corrosion KW - Imaging technique KW - Mass spectrometry PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-353872 UR - http://www.nature.com/articles/srep19929 DO - https://doi.org/10.1038/srep19929 SN - 2045-2322 VL - 6 IS - 19929 SP - 1 EP - 7 PB - nature publishing group CY - London, United Kingdom AN - OPUS4-35387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Zastrow, Philip A1 - Kranzmann, Axel ED - Jha, A. ED - Wang, C. ED - Neelameggham, N.R. ED - Guillen, D.P. ED - Li, L. ED - Belt, C.K. ED - Kirchain, R. ED - Spangenberger, J.S. ED - Johnson, F. ED - Gomes, A.J. ED - Pandey, A. ED - Hosemann, P. T1 - Evaluation of heat treatment performance of potential pipe steels in CCS-environment N2 - To resist the corrosive geothermal environment during carbon capture and storage CCS -such as: heat, pressure, salinity of the aquifer, CO2-partial pressure, properties of pipe steels-require certain specification. For evaluation samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16–4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h up to 8000 h in a CO2-saturated synthetic aquifer environment similar to a possible geological situation in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 °C to 670 °C and pits -indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to these particular conditions. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - High temperature KW - High pressure PY - 2015 SN - 978-1-119-08240-8 DO - https://doi.org/10.1002/9781119093220.ch2 SP - 15 EP - 22 PB - Wiley AN - OPUS4-34717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Eichler, Thorsten A1 - Millar, Steven A1 - Gottlieb, Cassian T1 - Laser induced breakdown spectroscopy (LIBS) - alternative to wet chemistry and micro-XRF N2 - The laser induced breakdown spectroscopy (LIBS) gives an alternative to the standard techniques for the direct investigation of a building material. It utilize a high energy pulsed laser beam for ablation and vaporization of a small amount of material, a plasma is formed and the plasma radiation is investigated using optical emission spectroscopy. Due to the principal all elements are detectable during one measurement. In combination with a translation stage or scanner system the heterogeneity of concrete is considered in the results. Thus an element concentration may be correlated to the cement content. After calibration with a set of reference samples quantitative results are obtained. The system is automated and allows rapid measurements and minimizes the possibility of errors. At BAM a laboratory LIBS system has been successful applied for the investigation of transport processes of different ions in building materials. The spatial resolution of the measurement may rich 100 μm and the frequency of the measurements is 100 Hz. The concentration of chlorine, sulfur, carbon, sodium, potassium, lithium and hydrogen where quantitatively determined. A mobile system for on-site analysis on bridges or parking decks is available. It is a tool for the estimation of the condition of concrete structures and for quality assurance during concrete repair work on-site. In these work an overview of the possibilities of LIBS for automated investigation of building materials are given. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - LIBS KW - Elemental analysis KW - Heterogeneity KW - Chlorides KW - Sulfates KW - Alkalis KW - Corrosion KW - ASR KW - Carbonation PY - 2015 SN - 1435-4934 SP - 1 EP - 5 AN - OPUS4-34676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirmaier, L. A1 - Bender, S. A1 - Heyn, Andreas T1 - The path to new zinc-free anti-corrosive pigments N2 - The development of anti-corrosive pigments for the most diverse coating Systems is extremely time consuming and expensive, owing to the necessary climatic testing, such as testing under salt spray exposure. To accelerate work on a new zinc-free pigment with improved protection, modern, electrochemical investigation methods have been used successfully and verified using traditional tests. KW - Coating KW - Pigment KW - Anti-corrosive KW - Zinc-free KW - Electrochemistry KW - Corrosion KW - Protection KW - Testing KW - Development PY - 2014 SN - 1357-731X VL - 204 IS - 4598 / July SP - 48 EP - 51 PB - FMJ International Publ. CY - Redhill AN - OPUS4-31184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa e Silva, A. A1 - Coelho, D. A1 - Kranzmann, Axel A1 - Rizzo, Fernando T1 - Simulation of Fe-Cr-X Alloy Exposed to an Oxyfuel Combustion Atmosphere at 600°C N2 - In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is. KW - CALPHAD approach KW - Corrosion KW - Decarburization KW - DICTRA modeling KW - Experimental kinetics PY - 2016 DO - https://doi.org/10.1007/s11669-015-0421-3 SN - 1547-7037 VL - 37 IS - 1 SP - 19 EP - 24 PB - ASTM International AN - OPUS4-50612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - An, Biwen Annie A1 - Voordouw, G. ED - An, Biwen Annie T1 - Chapter 4. Microbial Communities Involved in High Salinity Souring in Shale Oil Fields N2 - This book chapter provides an overview of the negative impacts of halophilic microorganisms in oil and gas operations. The chapter used a Canadian shale oil reservoir as an case study example to show the high souring and corrosion potential of halophilic microorganisms. KW - Corrosion KW - Halophilic KW - Microorganism KW - Microbial community modelling KW - Oil and gas reservoir KW - Shale KW - Geological formation KW - Oilfield PY - 2019 SN - 13 978-1-138-05775-3 SP - 57 EP - 69 PB - CRC Press CY - Boca Raton ET - 1. AN - OPUS4-49599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Bartholmai, Matthias T1 - Smart RFID Sensors Embedded in Building Structures for Early Damage Detection and Long-Term Monitoring N2 - In civil engineering, many structures are made of reinforced concrete. Most Degradation processes relevant to this material, e.g., corrosion, are related to an increased level of material moisture. Therefore, moisture monitoring in reinforced concrete is regarded as a crucial method for structural health monitoring. In this study, passive radio frequency identification (RFID)-based sensors are embedded into the concrete. They are well suited for long-term operation over decades and are well protected against harsh environmental conditions. The energy supply and the data transfer of the humidity sensors are provided by RFID. The sensor casing materials are optimised to withstand the high alkaline environment in concrete, having pH values of more than 12. Membrane materials are also investigated to identify materials capable of enabling water vapour transport from the porous cement matrix to the embedded humidity sensor. By measuring the corresponding relative humidity with embedded passive RFID-based sensors, the cement hydration is monitored for 170 days. Moreover, long-term moisture monitoring is performed for more than 1000 days. The Experiments show that embedded passive RFID-based sensors are highly suitable for long-term structural health monitoring in civil engineering. KW - RFID based sensors KW - Embedded sensors KW - Corresponding relative humidity KW - Porous building materials KW - Reinforced concrete KW - Corrosion KW - Civil engineering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500831 DO - https://doi.org/10.3390/s19245514 VL - 19 IS - 24 SP - 1 EP - 18 PB - MDPI CY - Basel, Swiss AN - OPUS4-50083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Angst, U.M. A1 - Geiker, M.R. A1 - Alonso, M.C. A1 - Polder, R. A1 - Isgor, O.B. A1 - Elsener, B. A1 - Wong, H. A1 - Michel, A. A1 - Hornbostel, K. A1 - Gehlen, C. A1 - François, R. A1 - Sanchez, M. A1 - Criado, M. A1 - Sørensen, H. A1 - Hansson, C. A1 - Pillai, R. A1 - Mundra, Shishir A1 - Gulikers, J. A1 - Raupach, M. A1 - Pacheco, J. A1 - Sagüés, A. T1 - The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI N2 - The steel–concrete interface (SCI) is known to influence corrosion of steel in concrete. However, due to the numerous factors affecting the SCI—including steel properties, concrete properties, execution, and exposure conditions—it remains unclear which factors have the most dominant impact on the susceptibility of reinforced concrete to corrosion. In this literature review, prepared by members of RILEM technical committee 262-SCI, an attempt is made to elucidate the effect of numerous SCI characteristics on chloride-induced corrosion initiation of steel in concrete. We use a method to quantify and normalize the effect of individual SCI characteristics based on different literature results, which allows comparing them in a comprehensive context. It is found that the different SCI characteristics have received highly unbalanced research attention. Parameters such as w/b ratio and cement type have been studied most extensively. Interestingly, however, literature consistently indicates that those parameters have merely a moderate effect on the corrosion susceptibility of steel in concrete. Considerably more pronounced effects were identified for (1) steel properties, including metallurgy, presence of mill scale or rust layers, and surface roughness, and (2) the moisture state. Unfortunately, however, these aspects have received comparatively little research attention. Due to their apparently strong influence, future corrosion studies as well as developments towards predicting corrosion initiation in concrete would benefit from considering those aspects. Particularly the working mechanisms related to the moisture conditions in microscopic and macroscopic voids at the SCI is complex and presents major opportunities for further research in corrosion of steel in concrete. KW - Steel-concrete interface KW - Interfacial transition zone KW - Durability KW - Corrosion KW - Inhomogeneity KW - Variability PY - 2019 DO - https://doi.org/10.1617/s11527-019-1387-0 VL - 52 IS - 4 SP - 88-1 EP - 88-25 PB - Springer Nature AN - OPUS4-48689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine learning‑based data fusion approach for improved corrosion testing N2 - This work presents machine learning-inspired data fusion approaches to improve the non-destructive testing of reinforced concrete. The principal effects that are used for data fusion are shown theoretically. Their effectiveness is tested in case studies carried out on largescale concrete specimens with built-in chloride-induced rebar corrosion. The dataset consists of half-cell potential mapping, Wenner resistivity, microwave moisture and ground penetrating radar measurements. Data fusion is based on the logistic Regression algorithm. It learns an optimal linear decision boundary from multivariate labeled training data, to separate intact and defect areas. The training data are generated in an experiment that simulates the entire life cycle of chloride-exposed concrete building parts. The unique possibility to monitor the deterioration, and targeted corrosion initiation, allows data labeling. The results exhibit an improved sensitivity of the data fusion with logistic regression compared to the best individual method half-cell potential. KW - Corrosion KW - Potential mapping KW - Machine learning PY - 2019 DO - https://doi.org/10.1007/s10712-019-09558-4 SN - 1573-0956 SN - 0169-3298 VL - 41 IS - 3 SP - 531 EP - 548 PB - Springer Nature AN - OPUS4-48799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Feldmann, Ines T1 - Low melting glasses for transparent and environmentally-resistant enamels N2 - Today glass is broadly used in modern architecture. For indoor applications it is possible to produce decorated glass by using enamel colours and glass painting techniques without any problems. However, this is more limited for applications out of doors. Humidity and environmental pollution attack the surface of the coating and can damage it. There are only a few colours on the market which are resistant towards acids and bases until now. Additionally, most of those colours are opaque. To extend the colour palette, chemically resistant low melting coloured glasses are being developed which are transparent and intensively toned even in thin coating thicknesses. To achieve such an ambitious aim, many parameters have to combine and act in a complex manner. New compositions of lead borosilicate, zinc borosilicate and lead-zinc borosilicate glasses were produced and milled as powder. The thermal properties as well as the environmental stability were analysed. The influence of PbO and ZnO on the thermal properties and the environmental stability were investigated. Evaluation of the fusing results shows that the production and mixture of transparent vitreous enamels for the exterior side of glasses is possible. The tests made it clear that the original materials for making the vitreous enamels must be excellently ground and prepared to achieve a satisfactory result. The method to produce durable vitreous enamels for exterior application also seems to allow the production of glass colours. KW - Low melting glasses KW - Enamels KW - Heavy metal free KW - Corrosion KW - Chemical durability KW - Aging tests KW - Architecture KW - Colored glasses PY - 2019 DO - https://doi.org/10.13036/17533546.60.4.002 SN - 1753-3546 SN - 1753-3554 VL - 60 IS - 4 SP - 97 EP - 104 PB - Society of Glass Technology CY - Sheffield, UK AN - OPUS4-48835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Pichelhöfer, A. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Galvanic chloride extraction by an embedded zinc anode: Ion distribution mapped by laser induced breakdown spectroscopy (LIBS) N2 - An important aspect with regard to the service life of zinc based galvanic anodes and the durability of the corrosion protection of steel in concrete is the “galvanic chloride extraction”. Chloride ions move in the electric field generated by the current, flowing between the galvanic anode and the cathodic steel. Migration leads to an accumulation of anions, e.g. chloride ions, at the anode and depletion of chlorides near the steel rebar surface. The ion migration was studied on steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied embedded zinc anode (EZA). The zinc anode was embedded and glued to the concrete surface by a geo-polymer based chloride free binder. The EZA was operated over a period of 1 year and the ion distribution between anode (EZA) and cathode (steel reinforcement) was studied by laser induced breakdown spectroscopy (LIBS) after 5 months, 7 months and 12 months. The results show that chloride ions efficiently migrate in the direction of the zinc-anode and accumulate there. Chloride distribution in the EZA correlates with the distribution of zinc ions generated by the anodic dissolution of the zinc anode in the binder matrix. The microstructure of the binder matrix and its interface to the zinc-anode are studied by REM/EDX – preliminary results will be reported. T2 - Concrete Solutions 2019 CY - Cluj Napoca, Romania DA - 30.09.2019 KW - Galvanic corrosion KW - Corrosion KW - Chloride extraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488189 DO - https://doi.org/10.1051/matecconf/201928903010 VL - 289 SP - 03010, 1 EP - 5 PB - MATEC Web of Conferences AN - OPUS4-48818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Grote, K.-H. ED - Hefazi, H. T1 - 6. Corrosion and Corrosion Resistance N2 - The chapter starts with a brief introduction about corrosion, which is defined as the interdependency between a metal, a corrosive environment, and the respective component design. The second section introduces the most important forms of aqueous electrochemical corrosion (uniform corrosion, galvanic corrosion, selective and intergranular corrosion, and finally pitting and crevice corrosion in the case of passive layer forming metals). In addition, electrochemical corrosion under applied mechanical load is introduced (stress corrosion cracking, hydrogen-assisted cracking, corrosion fatigue), as well as special forms of corrosion (erosion, fretting, and microbiologically induced corrosion). The third section of this chapter introduces (mostly dry) chemical corrosion and high-temperature corrosion (oxidation, carburization, high-temperature hydrogen attack, sulfurization, nitriding, halogenation). As in the case of electrochemical corrosion, chemical corrosion can also be superimposed by mechanical loads. Finally, general facts on the testing of corrosion are introduced. KW - Corrosion KW - Corrosion testing KW - Handbook KW - Electrochemical corrosion KW - Chemical corrosion PY - 2021 SN - 978-3-030-47035-7 DO - https://doi.org/10.1007/978-3-030-47035-7_6 VL - 2021 SP - 185 EP - 213 PB - Springer Nature Switzerland AG CY - Cham (CH) ET - 2nd Edition AN - OPUS4-52423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burkert, Andreas A1 - Müller, Thoralf A1 - Lehmann, Jens A1 - Mietz, Jürgen T1 - Long-term corrosion behaviour of stainless steels in marine atmosphere N2 - Nine different stainless steel alloys were exposed for 5 years under marine environment and their corrosion behaviour was compared and assessed. The investigation of four different surface finishes for all alloys tested further enabled to consider industry-specific features of the surface finish for the material comparison. The results of the exposure tests yield conclusions regarding the influence of alloy composition, surface finish and exposure duration under marine environment. The three duplex stainless steels revealed excellent corrosion resistance even in case of crevices during the 5 years of exposure under the given exposure conditions. Also the molybdenum-alloyed ferritic steel 1.4521 showed good corrosion resistance comparable to the classical austenitic materials 1.4301 and 1.4404. KW - Corrosion KW - Free weathering KW - Marine atmosphere KW - Stainless steels PY - 2018 DO - https://doi.org/10.1002/maco.201709636 SN - 0947-5117 SN - 1521-4176 VL - 69 IS - 1 SP - 20 EP - 28 PB - Wiley-VCH Verlag GmbH & Co KGaA CY - Weinheim AN - OPUS4-43625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, S. A1 - Bernal, S. A. A1 - Criado, M. A1 - Hlaváček, Petr A1 - Ebell, Gino A1 - Reinemann, Steffi A1 - Gluth, Gregor A1 - Provis, J. L. T1 - Steel corrosion in reinforced alkali‐activated materials N2 - The development of alkali‐activated materials (AAMs) as an alternative to Portland cement (PC) has seen significant progress in the past decades. However, there still remains significant uncertainty regarding their long term performance when used in steel‐reinforced structures. The durability of AAMs in such applications depends strongly on the corrosion behaviour of the embedded steel reinforcement, and the experimental data in the literature are limited and in some cases inconsistent. This letter elucidates the role of the chemistry of AAMs on the mechanisms governing passivation and chloride‐induced corrosion of the steel reinforcement, to bring a better understanding of the durability of AAM structures exposed to chloride. The corrosion of the steel reinforcement in AAMs differs significantly from observations in PC; the onset of pitting (or the chloride ‘threshold’ value) depends strongly on the alkalinity, and the redox environment, of these binders. Classifications or standards used to assess the severity of steel corrosion in PC appear not to be directly applicable to AAMs due to important differences in pore solution chemistry and phase assemblage. KW - Corrosion KW - Alkali-activated PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435162 DO - https://doi.org/10.21809/rilemtechlett.2017.39 SN - 2518-0231 VL - 2 SP - 33 EP - 39 PB - RILEM Publications SARL CY - Paris, France AN - OPUS4-43516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Rosemann, Paul A1 - Babutzka, Martin A1 - Bender, S. T1 - Electrochemical noise of unalloyed steel in mixtures of water-based binders and pigments N2 - The development of organic coatings for corrosion protection is an elaborate process with a multitude of often interminable investigations and tests of protection properties. Electrochemical methods support the processes of development to a great extent and help to understand mechanisms of action and failure. They are usually carried out on applied coating systems with a completed formulation. An examination possibility is presented in this publication that enables the characterization of waterbased coatings with different formulation variations in the liquid (aqueous) state with the aid of electrochemical noise technique. Thus, selection of binders, pigments, and other additives is supported essentially and made more efficient in a very early Phase of formulation development. The paper shows that a unique insight into the dynamic processes of a metal in contact with an aqueous coating dispersion is possible using the example of the development of zinc-free corrosion-inhibiting pigments for waterbased coatings. In addition, it is presented in which way the results correlate with the performance of applied coatings. KW - Organic coatings KW - Electrochemical noise KW - Corrosion KW - Corrosion protection KW - Corrosion protection pigments PY - 2017 DO - https://doi.org/10.1002/maco.201709671 SN - 0947-5117 SN - 1521-4176 VL - 68 IS - 12 SP - 1295 EP - 1301 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-43319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Corrosion control through organic coatings (Book review) N2 - Finally it can be summarized that this book fulfills its intention of providing theoretical background and examples for practical applications of coatings used for corrosion protection. It can be recommended to those being interested in coatings, serving as an overview on aspects which needs to be considered when working with such systems. KW - Coating KW - Corrosion KW - Pipeline PY - 2017 DO - https://doi.org/10.1002/maco.201770094 SN - 1521-4176 VL - 68 IS - 9 SP - 1014 EP - 1014 PB - WILEY-VCH Verlag GmbH & Co. KgaA CY - Weinheim AN - OPUS4-43706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa e Silva, A. A1 - Coelho, D. A1 - Rizzo, F. A1 - Kranzmann, Axel T1 - Simulation of Fe-Cr-X alloy exposed to an oxyfuel combustion atmosphere at 600 °C N2 - In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is. KW - CALPHAD approach KW - Corrosion KW - Decarburization KW - DICTRA modeling KW - Experimental kinetics KW - Iron alloys KW - Kinetics KW - Multicomponent diffusion KW - Steel PY - 2016 DO - https://doi.org/10.1007/s11669-015-0421-3 SN - 1547-7037 SN - 1863-7345 VL - 37 IS - 1 SP - SI, 19 EP - 24 PB - Springer US AN - OPUS4-40110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Burkert, Andreas A1 - Ebell, Gino A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Mayer, T. A1 - Meier, J. A1 - Mietz, Jürgen A1 - Reichling, K. A1 - Sodeikat, C. T1 - Electrochemical half-cell potential measurements for the detection of reinforcement corrosion N2 - This specification describes the application of electrochemical half‐cell potential measurements (frequently also called potential mapping) for the detection of reinforcement corrosion in reinforced concrete structures. Areas of corroding reinforcement steel can be located in a nondestructive manner by means of this procedure. Half‐cell potential measurements are used in order to detect chloride‐induced corrosion. However, it is not recommended in order to assess the risk of carbonation‐induced corrosion. For this purpose the determination of the carbonation depth and the concrete cover appear to be more appropriate. The content of this specification exclusively refers to the application of mobile, local variable reference electrodes, which are only placed on the concrete surface while measuring. The technique distinguishes itself thereby from the range of corrosion monitoring systems with stationary installed reference electrodes and sensor systems, respectively, whereby it is possible to continuously track measurements within the area of the installed electrodes. However, these methods are not dealt with in this specification. KW - Monitoring KW - Corrosion KW - Reinforcement PY - 2014 SN - 978-940283-72-6 SP - B 03, 1 EP - 19 PB - DGZfP CY - Berlin AN - OPUS4-40419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel A1 - Wolthusen, Helmut T1 - Unusual Corrosion Behavior of 1.4542 Exposed a Laboratory Saline Aquifer Water CCS-Environment N2 - Differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Surface corrosion layers are homogeneous but unusually discontinuously ellipsoidal. After 8000 h at 100 bar maximum corrosion rate in the liquid phase is approximately 0.014 mm/year, with normalizing providing best corrosion resistance and approximately 0.003 mm/year in the supercritical phase where hardening+tempering at 670 °C leads to lowest corrosion rates. KW - CO2-storage KW - Supercritical CO2 KW - Steel KW - Pipeline KW - Corrosion KW - CCS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418472 DO - https://doi.org/10.1016/j.egypro.2017.03.1679 VL - 114 SP - 5229 EP - 5240 PB - Elsevier Ltd. AN - OPUS4-41847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Potential of martensitic stainless steel X5CrNiCuNb 16-4 as pipe steel in corrosive CCS environment N2 - Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Additionally fatigue tests were performed via push-pull tests with a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). Best corrosion resistance in the liquid phase is achieved via normalizing prior to exposure and hardening+tempering at 670 °C leads to lowest corrosion rates in the supercritical phase. With no regard to atmosphere discontinuously ellipsoidal surface corrosion regions appear after exposure of 4000 h and more. The endurance limit of X5CrNiCuNb16-4 measured in air is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa) The scatter range TN = 1:34 is disproportionately large contributing to an overall unusual corrosion behaviour. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment KW - Fatigue KW - Endurance limit PY - 2017 DO - https://doi.org/10.18178/ijesd.2017.8.7.998 SN - 2010-0264 VL - 8 IS - 7 SP - 466 EP - 473 AN - OPUS4-41863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Detection of reinforcement corrosion in reinforced concrete structures by potential mapping: Theory and practice N2 - Electrochemical potential mapping according to guideline B3 of DGZfP (German Society for Nondestructive Testing) is a recognized technique for the localization of corroding reinforcing steels. In reinforced concrete structures the measured potentials are not necessarily directly linked to the corrosion likelihood of the reinforcing steel. The measured values may be significantly affected, different from, e.g., stress measurement, by different influences on the potential formation at the phase boundary metal/concrete itself as well as the acquisition procedure. Due to the complexity of influencing factors there is a risk that the results are misinterpreted. Therefore, in a training concept firstly the theoretical basics of the test method should be imparted. Then, frequently occurring practical situations of various influencing factors will be made accessible to the participants by a model object specially designed for this purpose. The aim is to impart profound knowledge concerning the characteristics of potential mapping for detecting corrosion of reinforcing steel in order to apply this technique in practice as reliable and economical test method. KW - Corrosion KW - Potential mapping KW - Korrosion KW - Potentialfeldmessung PY - 2018 DO - https://doi.org/10.1155/2018/3027825 SN - 1687-9333 SN - 1687-9325 VL - 2018 SP - Article 3027825, 1 EP - 6 PB - Hindawi AN - OPUS4-46206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - An, Biwen A1 - Shen, Y. A1 - Voordouw, J. A1 - Voordouw, G. ED - Dumas, C. T1 - Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs N2 - Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines into methane and ammonium. Methylamines are added to fracturing fluid to prevent clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). We analyzed field samples from a shale gas reservoir in the Duvernay Formation and from a shale oil reservoir in the Bakken formation in Canada to determine the origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back waters, and late flow back waters from the shale gas reservoir had increasing salinity of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses reflected this fresh water to saline transition with halophilic taxa including Halomonas, Halanaerobium, and Methanohalophilus being increasingly present. Early and late flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively. Such high concentrations had also been found in the Bakken produced waters. Enrichment cultures of Bakken produced waters in medium containing mono, di-, or trimethylamine, or triglycinebetaine (GB) converted these substrates into ammonium (up to 20 mM) and methane. The methylotrophic methanogen Methanohalophilus, which uses methylamines for its energy metabolism and uses GB as an osmolyte, was a dominant community member in these enrichments. Halanaerobium was also a dominant community member that metabolizes GB into trimethylamine, which is then metabolized further by Methanohalophilus. However, the micromolar concentrations of GB measured in shale reservoirs make them an unlikely source for the 1,000-fold higher ammonium concentrations in flow-back waters. This ammonium either originates directly from the reservoir or is formed from methylamines, which originate from the reservoir, or are added during the hydraulic fracturing process. These methylamines are then converted into ammonium and methane by halophilic methylotrophic methanogens, such as Methanohalophilus, present in flow-back waters. KW - Methanogen KW - Oil and gas industry KW - Shale KW - Halophile KW - Corrosion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474982 UR - https://www.frontiersin.org/articles/10.3389/fenrg.2019.00023/full DO - https://doi.org/10.3389/fenrg.2019.00023 VL - 7 SP - Article 23, 1 EP - 13 PB - Frontiers Media CY - Frontiers in Energy Research AN - OPUS4-47498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinemann, Steffi A1 - Rosemann, P. A1 - Babutzka, Martin A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Influence of grinding parameters on the corrosion behavior of austenitic stainless steel N2 - Samples of the austenitic stainless steel grade X5CrNi18‐10 (1.4301, AISI 304) were ground industrially with various grinding parameters to study their influence on corrosion resistance. The ability of the mechanically ground surfaces to form a stable passive layer was evaluated by KorroPad test and a modified electrochemical potentiodynamic reactivation test based on a single loop (EPR‐SL). Furthermore, the surfaces were characterized by surface analytical methods. The main influence was determined regarding abrasive belt type. Surfaces mechanically ground with granulate abrasive belts constantly had a lower corrosion resistance than surfaces ground with single‐coated grain. The granulate abrasive belts generated more sensitized surface areas and left formations of welded sample material on the mechanically ground surfaces. A post‐treatment with a nonwoven abrasive proved to be an effective finishing process by which the surface defects and sensitized material got removed and the surfaces regained the expected corrosion resistance. KW - Abrasive belt KW - Austenitic stainless steel KW - Electrochemical potentiodynamic reactivation KW - Grinding KW - KorroPad KW - Surface KW - Corrosion PY - 2019 DO - https://doi.org/10.1002/maco.201910874 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 10 SP - 1776 EP - 1787 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-47871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Corrosion and corrosion fatigue of steels in downhole CCS environment - A summary N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO₃ and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO₂: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - Carbon capture and storage PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531391 DO - https://doi.org/10.3390/pr9040594 SN - 2227-9717 VL - 9 IS - 4 SP - 1 EP - 33 PB - MDPI CY - Basel AN - OPUS4-53139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, S. A1 - Horn, Wolfgang A1 - Eggert, G. A1 - Krekel, C. T1 - Are cellulose ethers safe for the conservation of artwork? New insights in their VOC activity by means of Oddy testing N2 - Cellulose ethers, like methyl cellulose (MC) or hydroxypropyl cellulose (HPC), are widely used in conservation. They also occur as additives and rheology modifiers in various products like dispersions or gels. Do such products release harmful volatile organic compounds (VOC) during their accelerated aging? A mass testing series utilizing the Oddy test of 60 commercial cellulose ethers ranks the products in safe for permanent use (P, no corrosion), only for temporary use (T, slight corrosion), and unsuitable at all (F, heavy corrosion). Results show that 55% of the products passed the test whereas 33% are for temporary use as slight corrosion occurred on at least one metal coupon and only 11% failed the Oddy test. Raman measurements of the corrosion products identified oxides like massicot, litharge, cuprite, and tenorite among carbonates (hydrocerussite, plumbonacrite), and acetates like basic lead acetate, lead acetate trihydrate as well as lead formate as main phases. For example, commercial, industrial Klucel® G (HPC) scored a T rating through slight corrosion on the lead coupon. Basic lead acetate among other phases indicates the presence of acetic acid. Additional measurements of the sample with thermal desorption GC–MS utilizing the BEMMA scheme confirm the high acetic acid outgassing and reveal the presence of a small amount of formaldehyde. KW - Cellulose ether KW - Corrosion KW - Oddy test KW - VOC KW - BEMMA PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547591 DO - https://doi.org/10.1186/s40494-022-00688-4 SN - 2050-7445 VL - 10 IS - 1 SP - 1 EP - 12 PB - Springer Open AN - OPUS4-54759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebell, Gino A1 - Mayer, T. F. A1 - Harnisch, J. A1 - Dauberschmidt, Ch. T1 - Corrosion monitoring of reinforced concrete structures:The DGZfP specification B12 Collaboration N2 - Corrosion monitoring of reinforced or prestressed concrete structures has becomeincreasingly important in recent years. Areas of application include componentsthat are no longer accessible after completion or where potential fieldmeasurements cannot be carried out due to existing coatings. Corrosion monitoringcan also be used to monitor the progress of corrosion in corroding systems, e.g. to prove the success of repair measures according to repair principle 8 in accordancewith EN 1504‐9 or repair method 8.3 in accordance with the DIBt repair guideline.It also could be used to prove the functionality of cathodic corrosion protectionsystems in accordance with ISO 12696. Despite the increasing importance ofcorrosion monitoring, no guidelines orrecommendations existed until 2018. Thisgap was closed by the English version of specification B12,“Corrosion Monitoringof Reinforced and Prestressed Concrete Structures,”of the German Society for Non‐Destructive Testing, which was published in 2021. This article introducesspecification B12 by explaining the basicmeasurement principles and illustratingthe potential of corrosion monitoring in new and existing buildings. KW - Corrosion KW - Monitoring PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580982 DO - https://doi.org/10.1002/maco.202313934 SN - 0947-5117 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-58098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Meist, M. A1 - Michael, O. A1 - Babutzka, M. A1 - Valet, Svenja A1 - Ebell, Gino T1 - Electrochemical characterization of surfaces of galvanized steels under different exposure conditions using gel electrolytes N2 - The corrosion behavior of galvanized steels and zinc components under atmospheric exposure depends mostly on the corrosion product‐based cover layer formation under the prevailing conditions. The use of agar‐based gel electrolytes makes it possible to use electrochemical methods to obtain a characteristic value from these cover layers that describe their current and future protective capacity. It is shown here that different states of galvanized steel can be distinguished very well under laboratory conditions and that this method is also suitable for use under practical conditions. Based on the characteristic values and assuming future time of wetness, it is very easy to draw up a forecast for the future corrosion rate, which provides plausible values. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - Mechanical Engineering KW - Mechanics of Materials KW - Environmental Chemistry KW - Corrosion KW - Znc PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599234 DO - https://doi.org/10.1002/maco.202414389 SP - 1 EP - 16 PB - Wiley VHC-Verlag AN - OPUS4-59923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hattrick-Simpers, J. A1 - Li, K. A1 - Greenwood, M. A1 - Black, R. A1 - Witt, Julia A1 - Kozdras, M. A1 - Pang, X. A1 - Özcan Sandikcioglu, Özlem T1 - Designing durable, sustainable, high-performance materials for clean energy infrastructure N2 - Civilization and modern societies would not be possible without manmade materials. Considering their production volumes, their supporting role in nearly all industrial processes, and the impact of their sourcing and production on the environment, metals and alloys are and will be of prominent importance for the clean energy transition. The focus of materials discovery must move to more specialized, application-tailored green alloys that outperform the legacy materials not only in performance but also in sustainability and resource efficiency. This white paper summarizes a joint Canadian-German initiative aimed at developing a materials acceleration platform (MAP) focusing on the discovery of new alloy families that will address this challenge. We call our initiative the “Build to Last Materials Acceleration Platform” (B2L-MAP) and present in this perspective our concept of a three-tiered self-driving laboratory that is composed of a simulation-aided pre-selection module (B2L-select), an artificial intelligence (AI)-driven experimental lead generator (B2L-explore), and an upscaling module for durability assessment (B2L-assess). The resulting tool will be used to identify and subsequently demonstrate novel corrosion-resistant alloys at scale for three key applications of critical importance to an offshore, wind-driven hydrogen plant (reusable electrical contacts, offshore infrastructure, and oxygen evolution reaction catalysts). KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - Automation KW - Artificial Intelligence (AI) KW - Elektrolyse KW - Structural Materials KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568452 DO - https://doi.org/10.1016/j.xcrp.2022.101200 SN - 2666-3864 VL - 4 IS - 1 SP - 1 EP - 11 PB - Cell Press ; Elsevier CY - Maryland Heights, MO AN - OPUS4-56845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valet, Svenja A1 - Bohlmann, Tatjana A1 - Burkert, Andreas A1 - Ebell, Gino T1 - Zinc acetate containing gel pads for electrochemical measurements of Zn samples N2 - Agar gel pads have been used for electrochemical measurements for some time. For zinc in particular, a standard method for measuring the stability of the corrosion product layer is being established. The main interpretation factor is the corrosion product layer resistance RL, as it is easy to determine and interpret. A high corrosion product layer resistance indicates a high level of protection. However, it is not yet known how low the corrosion product layer resistance is for freshly produced zinc samples. As zinc is highly active, it reacts immediately with the environment to form a corrosion product layer, which affects the corrosion product layer resistance. The addition of zinc acetate to the agar gel pads prevents the formation of a surface layer and destroys existing ones. This makes it possible to measure an almost corrosion product-free zinc surface. This is important in defining the range of corrosion product layer resistance for a protective surface. KW - Electrochemistry KW - General Chemical Engineering KW - Analytical Chemistry KW - Corrosion KW - Zinc KW - Korrosion PY - 2023 DO - https://doi.org/10.1016/j.jelechem.2023.117814 SN - 1572-6657 VL - 948 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -