TY - JOUR A1 - Rurack, Knut A1 - Radeglia, Reiner T1 - Transition Metal Ion Complexes of 2,2'-Bipyridyl-3,3'-diol and 2,2'-Bipyridyl-3-ol: Spectroscopic Properties and Solvent-Dependent Binding Modes JF - European journal of inorganic chemistry N2 - The complexation behaviour of 2,2-bipyridyl-3,3-diol and 2,2-bipyridyl-3-ol, BP(OH)2 and BPOH, with various heavy and transition metal ions has been investigated in aqueous, alcoholic, and acetonitrile solutions. Whereas the complexes with paramagnetic ions and HgII are non-fluorescent, ZnII and CdII form highly fluorescent complexes, their coordination geometries depending on the solvent proticity and hydrogen-bond donating ability. Through a comparative study with the corresponding chelates of 2,2-bipyridyl (bipy), N,O-coordination in a six-membered ring chelate has been found to be the dominant binding mode in both the ZnII and CdII complexes in the protic solvents water and ethanol. Only for ZnII and BPOH is exclusive N,N-chelation found in acetonitrile. NMR measurements on BP(OH)2, BPOH, and bipy in the presence of ZnII and CdII in acetonitrile confirmed these findings. KW - Chelates KW - Hydroxy bipyridyls KW - Fluorescence KW - Cadmium KW - Zinc KW - N ligands PY - 2000 DO - https://doi.org/10.1002/1099-0682(200010)2000:10<2271::AID-EJIC2271>3.0.CO;2-3 SN - 1434-1948 SN - 1099-0682 VL - 2000 IS - 10 SP - 2271 EP - 2282 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rurack, Knut A1 - Bricks, J. L. T1 - Towards Simple and Efficient Molecular Reporters - Combining Electron Transfer and Charge Transfer in Functional Dyes of Donor-Acceptor-Spacer-Donor Constitution JF - Arkivoc - Free online journal of organic chemistry KW - Donor-Acceptor-Systems KW - Heterocycles KW - Electron Transfer KW - Fluorescence KW - Chelates PY - 2001 UR - http://content.arkat-usa.org/ARKIVOC/JOURNAL_CONTENT/manuscripts/2001/BT-189HP%20as%20published%20mainmanuscript.pdf SN - 1424-6376 SN - 1551-7012 SN - 1551-7004 IS - 11 SP - 31 EP - 40 PB - Arkat CY - Zurich AN - OPUS4-1331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, K. A1 - Meyer-Plath, Asmus A1 - Keller, D. A1 - Ohl, A. T1 - On the Applicability of Plasma Assisted Chemical Micropatterning to Different Polymeric Biomaterials JF - Plasmas and polymers N2 - A plasma process sequence has been developed to prepare chemical micropatterns on polymeric biomaterial surfaces. These patterns induce a guided localized cell layover at microscopic dimension. Two subsequent plasma steps are applied. In the first functionalization step a microwave ammonia plasma introduces amino groups to obtain areas for very good cell adhesion; the second passivation step combines pattern generation and creation of cell repelling areas. This downstream microwave hydrogen plasma process removes functional groups and changes the linkages of polymer chains at the outermost surfaces. Similar results have been obtained on different polymers including polystyrene (PS), polyhydroxyethylmethacrylate (PHEMA), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polyethylenenaphthalate (PEN). Such a rather universal chemical structuring process could widen the availability of biomaterials with specific surface preparations. KW - Microwave plasma KW - Ammonia KW - Hydrogen KW - Polymer surface KW - Cell culture KW - XPS KW - Fluorescence PY - 2002 DO - https://doi.org/10.1023/A:1016239302194 SN - 1084-0184 SN - 1572-8978 VL - 7 IS - 2 SP - 103 EP - 125 PB - Plenum Press CY - New York, NY AN - OPUS4-1729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fery-Forgues, S. A1 - Delavaux-Nicot, B. A1 - Lavabre, D. A1 - Rurack, Knut T1 - Intermolecular quenching of excited singlet states by ferrocenyl derivatives - study with ketocyanine dyes JF - Journal of photochemistry and photobiology / A N2 - The fluorescence quenching of 1,5-bis[4-(diethylamino)phenyl]penta-1,4-dien-3-one (1), 1-[4-(diethylamino)phenyl]-5-phenylpenta-1,4-dien-3-one (2) and chalcone 3 (1-[4-(diethylamino)phenyl]but-1-en-3-one) was studied in acetonitrile using ferrocene and three commercially available derivatives, 1,1?-diacetylferrocene, acetylferrocene and 1,1?-dimethylferrocene. The spectroscopic and electrochemical characteristics of all the compounds were investigated. The feasibility of the quenching process was calculated, showing in particular that electron transfer was thermodynamically possible in every case. The steady-state fluorescence of the three organic dyes was then measured in the presence and in the absence of the ferrocenyl derivatives and the data were corrected for inner-filter effects. 1,1?-Diacetylferrocene and acetylferrocene proved to be the most efficient quenchers, and among the three dyes investigated, chalcone 3 was the most sensitive to the presence of the ferrocenyl derivatives. However, the fluorescence decay times of the ketocyanines were not affected by the presence of the ferrocene derivatives, indicating that quenching was not diffusion-controlled but rather the consequence of the formation of a ground state complex. KW - Fluorescence KW - Ferrocene KW - Singlet state KW - Quenching KW - Energy transfer KW - Electron transfer PY - 2003 DO - https://doi.org/10.1016/S1010-6030(02)00400-8 SN - 1010-6030 SN - 1873-2666 VL - 155 IS - 1-3 SP - 107 EP - 114 PB - Elsevier CY - Lausanne AN - OPUS4-2277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bricks, J. L. A1 - Slominskii, J. L. A1 - Kudinova, M. A. A1 - Tolmachev, A. I. A1 - Rurack, Knut A1 - Resch-Genger, Ute A1 - Rettig, W. T1 - Syntheses and photophysical properties of a series of cation-sensitive polymethine and styryl dyes JF - Journal of photochemistry and photobiology / A N2 - The syntheses and photophysical properties of 20 cation-sensitive fluoroionophores carrying the tetraoxa monoaza 15-crown-5 receptor are described and discussed. Whereas complexation induces only weak effects for the positively charged hemicyanine probes, the closely related styryl dyes show stronger changes in their photophysical properties upon cation binding in the analytically advantageous near-infrared (NIR) region. The strongest effects in both cation-induced spectral effects and complex stability constants are observed for the uncharged probes of styryl base-type, but these probes usually absorb and emit at shorter wavelengths in the UV/VIS region. For both styryl dyes and styryl bases, in some cases cation-induced fluorescence enhancement or quenching is found. KW - Fluorescence KW - Ionophores KW - Unsymmetrical cyanines KW - Styryl dyes KW - Styryl bases PY - 2000 DO - https://doi.org/10.1016/S1010-6030(00)00208-2 SN - 1010-6030 SN - 1873-2666 VL - 132 IS - 3 SP - 193 EP - 208 PB - Elsevier CY - Lausanne AN - OPUS4-2089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rurack, Knut A1 - Resch-Genger, Ute A1 - Rettig, W. T1 - Global analysis of time-resolved emission-a powerful tool for the analytical discrimination of chemically similar ZnII and CdII complexes JF - Journal of photochemistry and photobiology / A N2 - The simultaneous analytical discrimination of spectrally very similar components with time- and wavelength-resolved fluorescence spectroscopy is demonstrated for the fluorescent probe BP(OH)2 and its complexes with the d10 metal ions CdII and ZnII in water. Whereas the absorption and emission spectra of the three components largely overlap the fluorescence lifetimes differ significantly. As a consequence, analyzing steady-state emission spectra of samples containing unknown amounts of both metal ions yields poor results for the analytical validity but the recording of fluorescence decay curves at different emission wavelengths improves the quality of the results drastically. The two techniques are compared in terms of goodness and analytical accuracy of the fit as well as analytical applicability. KW - Time-resolved KW - Fluorescence KW - ZnII KW - CdII KW - 2,2´-Bipyridyl-3,3´-diol PY - 1998 DO - https://doi.org/10.1016/S1010-6030(98)00369-4 SN - 1010-6030 SN - 1873-2666 VL - 118 IS - 3 SP - 143 EP - 149 PB - Elsevier CY - Lausanne AN - OPUS4-2096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Rurack, Knut ED - Lieberman, R. T1 - Steady-state and time-resolved fluorometry of fluorescent pollutants and heavy metal complexes T2 - Chemical, biochemical, and environmental fiber sensors IX N2 - Time-resolved laser-induced fluorescence spectroscopy is one of the most sensitive optical methods which is well suited for on-line in situ analysis. Here, three examples for the steady- state and time-resolved fluorescence analysis of environmentally important analytes, the fluorescent monoaromatic hydrocarbons benzene, toluene, and xylene as well as non fluorescent heavy metal ions forming a fluorescent complex with a cation coordinating fluorescence probe, are presented and the potential of both methods is discussed. For BTX, various mixtures of the spectrally similar compounds B, T, and X showing different fluorescence lifetimes were studied with both methods. As an example for fluorometric metal ion analysis, the fluorescence probe BP(OH)2 (2,2'-bipyridyl- 3,3'-diol) was employed for the determination of d10 metal ions in water and the newly developed fluorescence probe APTA for the detection of Cu(II). Cation complexation of BP(OH2 yields spectrally very similar complexes which differ in their fluorescence lifetimes. Complexation of APTA to Cu(II) leads to small spectral changes and a strong increase in fluorescence quantum yield and lifetime. For the analytes studied, a comparison of the detection limits, standard deviations, and linear dynamic range of both methods clearly demonstrates the analytical potential of time-resolved fluorometry. T2 - Conference CY - Munich, Germany DA - 1997-06-16 KW - Fluorescence KW - Time-resolved KW - Probe KW - Heavy metal ion KW - Cation complex PY - 1997 SN - 0-8194-2526-5 DO - https://doi.org/10.1117/12.276139 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 3105 SP - 96 EP - 103 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-2099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Rurack, Knut A1 - Bricks, J.L. A1 - Slominskii, J.L. T1 - New fluorophore receptor systems for heavy metal ions: a spectroscopic study JF - Journal of fluorescence KW - Fluorescence KW - Probe KW - Cation complex KW - Ion responsive KW - Chelation enhanced PY - 1997 SN - 1053-0509 SN - 1573-4994 VL - 7 IS - 1 SP - 231S EP - 233S PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-2100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Witt, Klaus ED - Chung, R. ED - Rodrigues, A. T1 - Colorimetric control of photographic prints - the problem of fluorescence T2 - The 9th congress of the International Colour Association T2 - 9th Congress of the International Colour Association ; 9th AIC Color CY - Rochester, NY, USA DA - 2001-06-24 KW - Fluoreszenz KW - Fotografie KW - Spektrometrie KW - Optische Qualitäts-Kontrolle KW - Fluorescence KW - Photographic prints KW - Colorimetry PY - 2001 SN - 0-8194-4128-7 DO - https://doi.org/10.1117/12.464659 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 4421 SP - 777 EP - 780 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-1416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Nietfeld, W. A1 - Engel, A. A1 - Neukammer, J. A1 - Nitschke, R. A1 - Ebert, B. A1 - Macdonald, R. T1 - How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards JF - Journal of fluorescence N2 - The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards. KW - Fluorescence KW - Standard KW - Calibration KW - Microarray KW - In vivo imaging KW - Flow cytometry PY - 2005 DO - https://doi.org/10.1007/s10895-005-2630-3 SN - 1053-0509 SN - 1573-4994 VL - 15 IS - 3 SP - 337 EP - 362 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-10823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pfeifer, Dietmar A1 - Monte, Christian A1 - Pilz, Walter A1 - Hoffmann, Angelika A1 - Spieles, Monika A1 - Rurack, Knut A1 - Hollandt, J. A1 - Taubert, D. A1 - Schönenberger, B. A1 - Nording, P. T1 - Traceability in Fluorometry: Part II. Spectral Fluorescence Standards JF - Journal of fluorescence N2 - The need for the traceable characterization of fluorescence instruments is emphasized from a chemist’s point of view, focusing on spectral fluorescence standards for the determination of the wavelength- and polarization-dependent relative spectral responsivity and relative spectral irradiance of fluorescence measuring systems, respectively. In a first step, major sources of error of fluorescence measurements and instrument calibration are revealed to underline the importance of this issue and to illustrate advantages and disadvantages of physical and chemical transfer standards for generation of spectral correction curves. Secondly, examples for sets of traceable chemical emission and excitation standards are shown that cover a broad spectral region and simple procedures for the determination of corrected emission spectra with acceptable uncertainties are presented. With proper consideration of the respective measurement principle and geometry, these dye-based characterization procedures can be not only applied to spectrofluorometers but also to other types of fluorescence measuring systems and even to Raman spectrometers. KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Excitation KW - Traceability PY - 2005 DO - https://doi.org/10.1007/s10895-005-2629-9 SN - 1053-0509 SN - 1573-4994 VL - 15 IS - 3 SP - 315 EP - 336 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-10824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Monte, Christian A1 - Pilz, Walter A1 - Resch-Genger, Ute ED - Hanssen, L. T1 - Linking Fluorescence Spectroscopy to the Scale of Spectral Sensitivity - The BAM Reference Fluorometer T2 - Optical diagnostics T2 - Optical Diagnostics / Optics and Photonics CY - San Diego, CA, USA DA - 2005-07-31 KW - Fluorescence KW - Traceability KW - Spectral Responsivity PY - 2005 SN - 0-8194-5885-6 N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 5880 SP - 588019-1 - 588019-10 PB - SPIE CY - Bellingham AN - OPUS4-12303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Y.-H. A1 - Descalzo López, Ana Belén A1 - Sgen, Z. A1 - Röhr, Holger A1 - Liu, Q. A1 - Wang, Y.-W. A1 - Spieles, Monika A1 - Li, Y.-Z. A1 - Rurack, Knut A1 - You, X.-Z. T1 - Mono- and Di(dimethylamino)styryl-Substituted Borondipyrromethene and Borondiindomethene Dyes with Intense Near-Infrared Fluorescence JF - Chemistry / Asian Journal N2 - Four novel borondipyrromethene (BDP) and -diindomethene (BDI) dyes with one or two (dimethylamino)styryl extensions at the chromophore were synthesized and spectroscopically investigated. An X-ray crystal structure shows that the extended auxochrome is virtually planar. All dyes thus display intense red/near infrared (NIR) absorption and emission. The (dimethylamino)styryl group induces a charge-transfer character that entails bright solvatochromic fluorescence, which is only quenched with increasing solvent polarity according to the energy-gap law. The dye with an additional dimethylanilino group at the meso position of BDP shows a remarkable switching of lipophilicity by protonation. Two dyes with an 8-hydroxyquinoline ligand at the meso position display quenched emission in the presence of Hg2+ or Al3+ owing to electron transfer from the excited BDP to the complexed receptor. The BDI dye presents a pH indicator with bright fluorescence and extremely low fluorescence anisotropy. KW - Borondipyrromethene KW - Dyes KW - Fluorescence KW - Indicators KW - Protonation PY - 2006 DO - https://doi.org/10.1002/asia.200600042 SN - 1861-4728 SN - 1861-471X VL - 1 IS - 1-2 SP - 176 EP - 187 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-12561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wan, Wei A1 - Biyikal, Mustafa A1 - Wagner, R. A1 - Sellergren, B. A1 - Rurack, Knut T1 - Fluorescent sensorymicroparticles that 'light-up' consisting of a silica core and a molecularly imprinted polymer (MIP) shell JF - Angewandte Chemie / International Edition N2 - From darkness came light: Incorporation of urea-based fluorescent dyes in an anion-imprinted thin polymer shell coated onto silica microparticles leads to a unique and highly enantioselective fluorescent 'light-up' response to analytes (see scheme, MIP molecularly imprinted polymer). KW - Core–shell particles KW - Enantioselectivity KW - Fluorescence KW - Molecularly imprinted polymers KW - Sensors PY - 2013 DO - https://doi.org/10.1002/anie.201300322 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 52 IS - 27 SP - 7023 EP - 7027 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mathejczyk, J. A1 - Pauli, Jutta A1 - Dullin, C. A1 - Napp, J. A1 - Tietze, L.-F. A1 - Kessler, H. A1 - Resch-Genger, Ute A1 - Alves, F. T1 - Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging JF - Molecular imaging N2 - Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing ανβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–D-phenylalanine–lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of ανβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probés fluorescence lifetime under application-relevant conditions. KW - Time domain near-infrared fluorescence (NIRF) imaging KW - Fluorescence KW - Lifetime KW - Quantum yield KW - RGD-Cy5.5 KW - Spectroscopic analysis PY - 2011 DO - https://doi.org/10.2310/7290.2011.00018 SN - 1535-3508 SN - 1536-0121 VL - 10 IS - 6 SP - 469 EP - 480 PB - Decker CY - Hamilton, Ont. AN - OPUS4-25711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lima, D.L.D. A1 - Schneider, Rudolf A1 - Esteves, V.I. T1 - Sorption behavior of EE2 on soils subjected to different long-term organic amendments JF - The science of the total environment N2 - The transport and fate of hydrophobic organic contaminants in the environment involve complex phenomena that are influenced by many processes that include sorption by soil components. Sorption behavior of EE2 molecules onto different soil samples was studied and results correlated with the content and type of organic matter present. The highest Κ value, among all soils presented in this study, was obtained for soil fertilized with compost (1.22) which presented the highest organic carbon content. Also the sorption behavior depends greatly on the soil specific organic matter characteristics. A strong positive correlation was observed between aromatic and carboxylic units and ΚOC values. The results also suggested an association of the EE2 aromatic nuclei face to face with the surface and/or another EE2 molecule and also sorbent–sorbate interactions due to hydrogen or covalent bonding, likely to occur due to the presence of phenolic function at C-3 and hydroxyl function at C-17 of the EE2 molecules that can react with carboxylic functional groups of soil organic matter. The stronger EE2 sorbs to soil organic matter lower is the leaching into drinking water resources and runoff to rivers and surface water, minimizing its residual toxicity. KW - EE2 KW - Sorption KW - Soil KW - Deconvolution KW - Fluorescence PY - 2012 DO - https://doi.org/10.1016/j.scitotenv.2012.02.014 SN - 0048-9697 VL - 423 SP - 120 EP - 124 PB - Elsevier CY - Amsterdam AN - OPUS4-25739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, Andreas A1 - Borcherding, H. A1 - Jäger, Christian A1 - Hatami, Soheil A1 - Würth, Christian A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Scope and limitations of surface functional quantification methods: exploratory study with poly(acrylic acid)-grafted micro- and nanoparticles JF - Journal of the American chemical society N2 - The amount of grafted poly(acrylic acid) on poly(methyl methacrylate) micro- and nanoparticles was quantified by conductometry, 13C solid-state NMR, fluorophore labeling, a supramolecular assay based on high-affinity binding of cucurbit[7]uril, and two colorimetric assays based on toluidine blue and nickel complexation by pyrocatechol violet. The methods were thoroughly validated and compared with respect to reproducibility, sensitivity, and ease of use. The results demonstrate that only a small but constant fraction of the surface functional groups is accessible to covalent surface derivatization independently of the total number of surface functional groups, and different contributing factors are discussed that determine the number of probe molecules which can be bound to the polymer surface. The fluorophore labeling approach was modified to exclude artifacts due to fluorescence quenching, but absolute quantum yield measurements still indicate a major uncertainty in routine fluorescence-based surface group quantifications, which is directly relevant for biochemical assays and medical diagnostics. Comparison with results from protein labeling with streptavidin suggests a porous network of poly(acrylic acid) chains on the particle surface, which allows diffusion of small molecules (cutoff between 1.6 and 6.5 nm) into the network. KW - Polymers KW - Surface groups KW - Quantification KW - Fluorescence PY - 2012 DO - https://doi.org/10.1021/ja302649g SN - 0002-7863 SN - 1520-5126 VL - 134 IS - 19 SP - 8268 EP - 8276 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Funk, C. A1 - Dietrich, Paul A1 - Gross, Thomas A1 - Min, Hyegeun A1 - Unger, Wolfgang A1 - Weigel, W. T1 - Epoxy-functionalized surfaces for microarray applications: surface chemical analysis and fluorescence labeling of surface species JF - Surface and interface analysis N2 - Methods for characterization of epoxy-functionalized substrates used for microarray applications, prepared by silanization with 3-glycidoxypropyltrimethoxysilane, have been developed. Contact angle measurements, X-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry and fluorescence based methods have been applied to investigate these epoxy-functionalized microarray substrates. The surface density of epoxy-functionalized glass slides was investigated by fluorescence labeling of surface species utilizing Rhodamine 110 as fluorescence probe. KW - Epoxy silane KW - Microarrays KW - Fluorescence KW - XPS KW - ToF-SIMS KW - Surface analysis PY - 2012 DO - https://doi.org/10.1002/sia.3856 SN - 0142-2421 SN - 1096-9918 VL - 44 IS - 8 SP - 890 EP - 894 PB - Wiley CY - Chichester AN - OPUS4-26342 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Behnke, Thomas A1 - Mathejczyk, J. A1 - Hamann, F. A1 - Alves, F. A1 - Hilger, I. A1 - Resch-Genger, Ute ED - Achilefu, S. ED - Raghavachari, R. T1 - Dye-biomolecule conjugates and NIR-fluorescent particles for targeting of disease-related biomarkers T2 - Proceedings of SPIE - Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications III N2 - Indispensable for fluorescence imaging are highly specific and sensitive molecular probes that absorb and emit in the near infrared (NIR) spectral region and respond to or target molecular species or processes. Here, we present approaches to targeted fluorescent probes for in vivo imaging in the intensity and lifetime domain exploiting NIR dyes. Screening schemes for the fast identification of suitable fluorophores are derived and design criteria for highly emissive optical probes. In addition, as a signal amplification strategy that enables also the use of hydrophobic NIR fluorophores as fluorescent reporters, first steps towards versatile strategies for the preparation of NIR-fluorescent polymeric particles are presented that can be utilized also for the design of targeted and analyte-responsive probes. KW - Fluorescence KW - Fluorescence lifetime imaging KW - Near-infrared KW - NIR KW - Cyanine dye KW - Cancer KW - In vivo imaging KW - Aggregation KW - Nanoparticle PY - 2011 DO - https://doi.org/10.1117/12.876828 SN - 1605-7422 N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7910 SP - 791014-1 EP - 791014-15 AN - OPUS4-24353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koshkina, Olga A1 - Bantz, C. A1 - Würth, Christian A1 - Lang, Thomas A1 - Resch-Genger, Ute A1 - Maskos, Michael T1 - Fluorophore-labeled siloxane-based nanoparticles for biomedical applications JF - Macromolecular symposia N2 - We present the synthesis and characterization of multifunctional fluorophore-labeled poly(organosiloxane) nanoparticles with core-shell architecture, where the fluorescent dye is incorporated into the core. Grafting of heterobifunctional poly(ethylene oxide) (PEO) onto the particle surface leads to water-soluble biocompatible nanoparticles. Two different strategies have been used for the synthesis: The encapsulation of dye-labeled monomers during the polycondensation with additional PEO coating and subsequent dye labeling by covalent attachment of the fluorescent dye rhodamine B to the (chloromethylphenyl)siloxane groups in the core after polymerization and grafting of PEO onto the surface. Comparison of the fluorescence quantum yields of the nanoparticles before and after PEO coating show a decrease in quantum yield after PEO coating. KW - Biocompatibility KW - Core-shell KW - Fluorescence KW - Fluorescence quantum yield KW - Nanoparticles KW - PEO PY - 2011 DO - https://doi.org/10.1002/masy.201100041 SN - 1022-1360 SN - 0258-0322 SN - 1521-3900 VL - 309/310 IS - 1 SP - 141 EP - 146 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-25143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Jens A1 - Hoekstra, S. A1 - Jäger, W. A1 - Gilijamse, J.J. A1 - van de Meerakker, S.Y.T. A1 - Meijer, G. T1 - Accumulation of Stark-decelerated NH molecules in a magnetic trap JF - The European physical journal D N2 - Here we report on the accumulation of ground-state NH molecules in a static magnetic trap. A pulsed supersonic beam of NH (a1Δ) radicals is produced and brought to a near standstill at the center of a quadrupole magnetic trap using a Stark decelerator. There, optical pumping of the metastable NH radicals to the X3Σ- ground state is performed by driving the spin-forbidden A3Π ← a1Δ transition, followed by spontaneous A → X emission. The resulting population in the various rotational levels of the ground state is monitored via laser induced fluorescence detection. A substantial fraction of the groundstate NH molecules stays confined in the several milliKelvin deep magnetic trap. The loading scheme allows one to increase the phase-space density of trapped molecules by accumulating packets from consecutive deceleration cycles in the trap. In the present experiment, accumulation of six packets is demonstrated to result in an overall increase of only slightly over a factor of two, limited by the trap-loss and reloading rates. KW - Cold matter KW - Stark deceleration KW - Trapping of polar molecules KW - NH KW - High resolution spectroscopy KW - Fluorescence KW - Radical PY - 2011 DO - https://doi.org/10.1140/epjd/e2011-20082-7 SN - 1434-6060 VL - 65 IS - 1-2 SP - 161 EP - 166 PB - Springer CY - Berlin AN - OPUS4-25050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Napp, J. A1 - Behnke, Thomas A1 - Fischer, L. A1 - Würth, Christian A1 - Wottawa, M. A1 - Katschinski, D.M. A1 - Alves, F. A1 - Resch-Genger, Ute A1 - Schäferling, M. T1 - Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia JF - Analytical chemistry N2 - Polystyrene nanoparticles (PS-NPs) were doped with an oxygen-sensitive near-infrared (NIR)-emissive palladium meso-tetraphenylporphyrin and an inert reference dye which are both excitable at 635 nm. The nanosensors were characterized with special emphasis on fundamental parameters such as absolute photoluminescence quantum yield and fluorescence lifetime. The PS-NPs were employed for ratiometric dual-wavelength and lifetime-based photoluminescent oxygen sensing. They were efficiently taken up by cultured murine alveolar macrophages, yielding a characteristic and reversible change in ratiometric response with decreasing oxygen concentration. This correlated with the cellular hypoxic status verified by analysis of hypoxia inducible factor-1α (HIF-1α) accumulation. In addition, the surface of PS-NPs was functionalized with polyethylene glycol (PEG) and the monoclonal antibody herceptin, and their binding to HER2/neu-overexpressing tumor cells was confirmed in vitro. First experiments with tumor-bearing mouse revealed a distinctive ratiometric response within the tumor upon hypoxic condition induced by animal sacrifice. These results demonstrate the potential of these referenced NIR nanosensors for in vitro and in vivo imaging that present a new generation of optical probes for oncology. KW - Fluorescence KW - NIR KW - Nanoparticles KW - Microparticles KW - Imaging KW - Cancer KW - Oxygene PY - 2011 DO - https://doi.org/10.1021/ac201870b SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 23 SP - 9039 EP - 9046 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, H.-J. A1 - Mack, J. A1 - Wu, D. A1 - Xue, Z.-L. A1 - Descalzo López, Ana Belén A1 - Rurack, Knut A1 - Kobayashi, N. A1 - Shen, Z. T1 - Synthesis and properties of fused-ring-expanded porphyrins that were core-modified with group 16 heteroatoms JF - Chemistry - A European journal N2 - The synthesis of a series of novel core-modified and fused-ring-expanded tetraphenylporphyrins is reported. Theoretical calculations and magnetic circular dichroism (MCD) and fluorescence spectroscopic measurements were used to analyze the effect of core modification with Group 16 oxygen, sulfur, selenium, and tellurium atoms on the optical properties and electronic structures of the porphyrins. Marked redshifts of the Q and B bands and accelerated intersystem-crossing rates were observed, thus making these compounds potentially suitable for use in a variety of applications. The scope for further fine-tuning of these optical properties based on additional structural modifications, such as the incorporation of fused benzene rings to form ABAB structures by using a thiophene precursor with a fused bicyclo[2.2.2]octadiene ring and the introduction of various substituents onto the meso-phenyl rings, is also examined. KW - Density functional calculations KW - Fluorescence KW - MCD spectroscopy KW - Porphyrinoids KW - Ring expansion PY - 2012 DO - https://doi.org/10.1002/chem.201200956 SN - 0947-6539 SN - 1521-3765 VL - 18 IS - 52 SP - 16844 EP - 16867 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Pauli, Jutta A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared JF - Analytical chemistry N2 - There is an increasing interest in chromophores absorbing and emitting in the near-infrared (NIR) spectral region, e.g., for applications as fluorescent reporters for optical imaging techniques and hence, in reliable methods for the characterization of their signal-relevant properties like the fluorescence quantum yield (Φf) and brightness. The lack of well established Φf standards for the NIR region in conjunction with the need for accurate Φf measurements in transparent and scattering media encouraged us to built up an integrating sphere setup for spectrally resolved measurements of absolute fluorescence traceable to radiometric scales. Here, we present the design of this setup and its characterization and validation including an uncertainty budget for the determination of absolute Φf in the visible and NIR. To provide the basis for better measurements of Φf in the spectral window from ca. 600 to 1000 nm used, e.g., for optical imaging, the absolute Φf of a set of NIR chromophores covering this spectral region are measured and compared to relative values obtained using rhodamine 101 as Φf standard. Additionally, the absolute Φf values of some red dyes that are among the most commonly used labels in the life sciences are presented as well as the absolute quantum yield of an optical probe for tumor imaging. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere KW - NIR KW - Standards KW - Quantum yield standards PY - 2012 DO - https://doi.org/10.1021/ac2021954 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 3 SP - 1345 EP - 1352 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Licha, K. A1 - Resch-Genger, Ute T1 - Probes for optical imaging: new developments JF - Drug discovery today: technologies N2 - Recent developments of fluorescent probes beyond approved indocyanine green (ICG) – itself increasingly spreading into new imaging applications like lymphatic mapping, arthritis imaging and tumor surgery – exploit various photophysical and biochemical mechanisms to monitor molecular events with higher specificity and accuracy. Emphasizing nanoparticulate formulations, targeted conjugates, activatable probes, probes with a sensor function and multimodality probes, this review discusses advantages and limitations of each type of probe, thereby critically assessing the desired translation into the clinic. KW - Fluorescence KW - Dye KW - Probe KW - Optical imaging KW - Method comparison KW - Particle KW - NIR KW - Probe design PY - 2011 DO - https://doi.org/10.1016/j.ddtec.2011.11.003 SN - 1740-6749 VL - 8 IS - 2-4 SP - e87 EP - e94 PB - Elsevier CY - Amsterdam AN - OPUS4-25936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hecht, Mandy A1 - Fischer, Tobias A1 - Dietrich, Paul A1 - Kraus, Werner A1 - Descalzo López, Ana Belén A1 - Unger, Wolfgang A1 - Rurack, Knut T1 - Fluorinated Boron-Dipyrromethene (BODIPY) dyes: bright and versatile probes for surface analysis JF - ChemistryOpen N2 - A family of bright boron-dipyrromethene-type fluorophores with a high number of fluorine atoms (F-BODIPYs) has been developed and characterized by X-ray crystallography and optical spectroscopy. The introduction of 3,5-bis(trifluoromethyl)phenyl and pentafluorophenyl moieties significantly enhances the photostability of such dyes, yielding for instance photostable near-infrared (NIR) fluorophores that show emission maxima>750 nm, when the BODIPY's π system is extended with two (dimethylamino)styryl and (dimethylamino)naphthastyryl moieties, or green-emitting BODIPYs with fluorescence quantum yields of unity. When equipped with a suitable group that selectively reacts for instance with amines, F-BODIPYs can be used as potent dual labels for the quantification of primary amino groups on surfaces by X-ray photoelectron spectroscopy (XPS) and fluorescence, two powerful yet complementary tools for the analysis of organic surface functional groups. The advantage of reactive F-BODIPYs is that they allow a fast and non-destructive mapping of the labelled supports with conventional fluorescence scanners and a subsequent quantification of selected areas of the same sample by the potentially traceable XPS technique. The performance is exemplarily shown here for the assessment of the amino group density on SiO2 supports, one of the most common reactive silica supports, in particular, for standard microarray applications. KW - Amino groups KW - Dyes KW - Fluorescence KW - Surface analysis KW - X-ray photoelectron spectroscopy KW - Amino-Gruppen KW - Farbstoffe KW - Fluoreszenz KW - Oberflächenanalytik KW - Röntgen-Photoelektronen-Spektroskopie PY - 2013 DO - https://doi.org/10.1002/open.201200039 SN - 2191-1363 VL - 2 IS - 1 SP - 25 EP - 38 PB - Wiley-VCH-Verl. CY - Weinheim AN - OPUS4-27783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Monte, Christian A1 - Pfeifer, Dietmar T1 - Standards in Fluorescence Spectroscopy JF - GIT laboratory journal Europe KW - Standard KW - Fluorescence KW - Reference material KW - Quality assurance KW - Spectrofluorometer PY - 2005 SN - 1434-2634 VL - 9 IS - 6 SP - 29 EP - 31 PB - GIT Verl. CY - Darmstadt AN - OPUS4-11556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Bringing electrons and microarray technology together JF - The Journal of physical chemistry / B Letters N2 - Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA-electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism. KW - Low energy electrons KW - DNA hybridization KW - Low voltage SEM KW - Fluorescence PY - 2007 DO - https://doi.org/10.1021/jp075338v SN - 1520-6106 SN - 1089-5647 VL - 111 IS - 36 SP - 10636 EP - 10638 PB - Soc. CY - Washington, DC AN - OPUS4-15840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engel, A. A1 - Ottermann, C. A1 - Klahn, J. A1 - Enseling, D. A1 - Korb, T. A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Schweizer, S. A1 - Selling, J. A1 - Kynast, U. A1 - Koberling, F. A1 - Rupertus, V. T1 - Fluorescence reference materials used for optical and biophotonic applications JF - Proceedings of SPIE-OSA biomedical optics / Diagnostic optical spectroscopy in biomedicine IV N2 - Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers like absorption/excitation cross sections and quantum yield. This can be done for different types of dopands in different materials like glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Based on the optical spectroscopy data we will discuss options for characteristic doped glasses and glass ceramics with respect to scattering and absorption regime. It has shown recently for YAG:Ce glass ceramics that for a proper determination of the quantum efficiency in these highly scattering media a reference material with similar scattering and fluorescent properties is required. This may be performed using the emission decay measurement diagnostics, where the decay time is below 100 ns. In this paper we present first results of these aspects using well performing LUMOGEN RED organic pigments for a comparison of mainly transparent glass with glass ceramics doped with various amounts of dopands e.g. ions of raw earth elements and transition metals. The LUMOGEN red is embedded in silica and polyurethane matrices. Characterisations on wavelength accuracy and lifetime for different environmental conditions (temperature, UV irradiation) have been performed. Moreover intensity patterns and results for homogeneity, isotropy, photo and thermal stability will be discussed. In a next step we will show the transfer of the characterisation methods to inorganic fluophores (YAG:Ce) in silicon. Fluorescence (steady state, decay time) and absorption (remission, absorption) spectroscopy working in different temperature regimes (10 - 350 K) are employed diagnostic methods in order to get a microscopic view of the relevant physical processes and to prove the correctness of the obtained data. The work is funded by BMBF under project number 13N8849. KW - Fluorescence KW - Reference material KW - Glass KW - Glass ceramic KW - Phosphor KW - Doped glass KW - Glass ceramics PY - 2007 SN - 0-8194-6247-0 DO - https://doi.org/10.1117/12.728144 SN - 1605-7422 VL - 6628 SP - 662815-1 - 662815-9 AN - OPUS4-16729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noble, J.E. A1 - Wang, L. A1 - Cerasoli, E. A1 - Knight, A.E. A1 - Porter, R.A. A1 - Gray, E. A1 - Howe, C. A1 - Hannes, E. A1 - Corbisier, P. A1 - Wang, J. A1 - Wu, L. A1 - Altieri, I. A1 - Patriarca, M. A1 - Hoffmann, Angelika A1 - Resch-Genger, Ute A1 - Ebert, B. A1 - Voigt, Jan A1 - Shigeri, Y. A1 - Vonsky, M.S. A1 - Konopelko, L.A. A1 - Gaigalas, A.K. A1 - Bailey, M. J. A. T1 - An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA JF - Clinical chemistry and laboratory medicine KW - ELISA KW - Fluorescence KW - Interferon KW - Uncertainty KW - Round Robin KW - Immunoassay KW - Quality assurance KW - Fluorescein PY - 2008 SN - 1434-6621 SN - 1437-8523 VL - 46 IS - 7 SP - 1033 EP - 1045 PB - De Gruyter CY - Berlin AN - OPUS4-18283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mix, Renate A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Decker, Renate A1 - Friedrich, Jörg Florian ED - Mittal, K. T1 - Covalent coupling of fluorophores to polymer surface-bonded functional groups T2 - Polymer surface modification (volume 4) KW - Plasma modification KW - Fluorescence KW - Surface functionalization KW - Reactions at polymer surfaces KW - Spectroscopy KW - Quantification PY - 2007 SN - 978-90-6764-453-2 VL - 4 SP - 171 EP - 191 PB - VSP CY - Utrecht AN - OPUS4-14867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rurack, Knut A1 - Trieflinger, C. A1 - Kovalchuck, Anton V. A1 - Daub, J. T1 - An ionically driven molecular IMPLICATION gate operating in fluorescence Mode JF - Chemistry - A European journal N2 - An asymmetrically core-extended boron-dipyrromethene (BDP) dye was equipped with two electron-donating macrocyclic binding units with different metal ion preferences to operate as an ionically driven molecular IMPLICATION gate. A Na+-responsive tetraoxa-aza crown ether (R2) was integrated into the extended π system of the BDP chromophore to trigger strong intramolecular charge transfer (ICT2) fluorescence and guarantee cation-induced spectral shifts in absorption. A dithia-oxa-aza crown (R1) that responds to Ag+ was attached to the meso position of BDP in an electronically decoupled fashion to independently control a second ICT1 process of a quenching nature. The bifunctional molecule is designed in such a way that in the absence of both inputs, ICT1 does not compete with ICT2 and a high fluorescence output is obtained (InA=InB=0→Out=1). Accordingly, binding of only Ag+ at R1 (InA=1, InB=0) as well as complexation of both receptors (InA=InB=1) also yields Out=1. Only for the case in which Na+ is bound at R2 and R1 is in its free state does quenching occur, which is the distinguishing characteristic for the InA=0 and InB=1→Out=0 state that is required for a logic IMPLICATION gate and Boolean operations such as IF-THEN or NOT. KW - Charge transfer KW - Dyes/pigments KW - Fluorescence KW - Logic gates KW - Molecular devices PY - 2007 DO - https://doi.org/10.1002/chem.200700858 SN - 0947-6539 SN - 1521-3765 VL - 13 IS - 32 SP - 8998 EP - 9003 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-16085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Ziegler, J. A1 - Merkulov, A. A1 - Nann, T. A1 - Resch-Genger, Ute T1 - Stability and Fluorescence Quantum Yield of CdSe-ZnS Quantum Dots - Influence of the Thickness of the ZnS Shell JF - Annals of the New York academy of sciences N2 - We investigated the correlation between the thickness of the ZnS shell of CdSe–ZnS quantum dots (QDs), the stability of the particles, and the fluorescence quantum yield. As a measure for stability, a new shell quality test was developed. This test is based on the reaction of the QDs with photochemically formed thiophenol radicals and communicates an imperfect ZnS shell by a rapid and complete loss of fluorescence. The quantum yield increases from less than 5% for unshelled CdSe up to 50%, with an increase in ZnS shell thickness up to 0.6–0.8 nm. At the same time, the particles become significantly more stable, as revealed by the shell test. KW - Quantum dot KW - Nanocrystal KW - Semiconductor KW - Fluorescence KW - Quantum yield KW - CdSe KW - CdSe-ZnS KW - Shell KW - ZnS shell KW - Stability KW - Stability test PY - 2008 DO - https://doi.org/10.1196/annals.1430.021 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 235 EP - 241 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ros-Lis, J.V. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Soto, J. A1 - Spieles, Monika A1 - Rurack, Knut T1 - Aquaraines as reporter units: insights into their photophysics, protonation, and metal-ion coordination behaviour JF - Chemistry - A European journal KW - Dyes/pigments KW - Fluorescence KW - Metal ions KW - Protonation KW - Squaraines KW - Farbstoffe KW - Fluoreszenz KW - Metallionen KW - Protonierung PY - 2008 DO - https://doi.org/10.1002/chem.200800300 SN - 0947-6539 SN - 1521-3765 VL - 14 SP - 10101 EP - 10114 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-18444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfeifer, Dietmar A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika A1 - Monte, Christian A1 - Resch-Genger, Ute T1 - The Calibration Kit Spectral Fluorescence Standards - A Simple and Certified Tool for the Standardization of the Spectral Characteristics of Fluorescence Instruments JF - Journal of fluorescence N2 - With the Calibration Kit Spectral Fluorescence Standards BAM-F001–BAM-F005, we developed a simple tool for the characterization of the relative spectral responsivity and the long-term stability of the emission channel of fluorescence instruments under routine measurement conditions thereby providing the basis for an improved comparability of fluorescence measurements and eventually standardization. This first set of traceable fluorescence standards, which links fluorescence measurements to the spectral radiance scale in the spectral range of 300–770 nm and has been optimized for spectrofluorometers, can be employed for different measurement geometries and can be adapted to different fluorescence techniques with proper consideration of the underlying measurement principles. KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Calibration tool PY - 2006 DO - https://doi.org/10.1007/s10895-006-0086-8 SN - 1053-0509 SN - 1573-4994 VL - 16 IS - 4 SP - 581 EP - 587 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-14206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engel, A. A1 - Ottermann, C. A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Schweizer, S. A1 - Selling, J. A1 - Spaeth, J.-M. A1 - Rupertus, V. ED - Grzymala, R. ED - Haeberlé, O. T1 - Glass based fluorescence reference materials used for optical and biophotonic applications JF - Proceedings of SPIE - Biophotonics and new therapy frontiers N2 - Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and biotechnical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. For routine measurements by fluorescence techniques the existence of an improved quality assurance is one of the basic needs. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values only. Typical requirements onto fluorescence reference materials or standards deal with the verification of the instrument performance as well as the improvement of the data comparability. Especially for biomedical applications fluorescence labels are used for the detection of proteins. In particular these labels consist of nano crystalline materials like CdS and CdSe. The field of Non-Cadmium containing materials is under investigation. In order to evaluate whether glass based materials can be used as standards it is necessary to calculate absolute values like absorption/excitation cross sections or relative quantum yields. This can be done using different quantities of dopands in glass, glass ceramics or crystals. The investigated materials are based on different types of glass, silicate, phosphate and boron glass, which play a dominant role for the absorption and emission mechanism. Additional to the so-called elementary fluorescence properties induced by raw earth elements the formation of defects lead to higher cross sections additionally. The main investigations deal with wavelength accuracy and lifetime of doped glasses, glass ceramics and crystalline samples. Moreover intensity patterns, homogeneity aspects and photo stability will be discussed. KW - Fluorescence KW - Reference material KW - Glass KW - Glass ceramics KW - Biophotonic KW - Multiplexing PY - 2006 DO - https://doi.org/10.1117/12.663627 SN - 1605-7422 VL - 6191 SP - 619110-1-619110-10 AN - OPUS4-14429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, D. A1 - Descalzo López, Ana Belén A1 - Weik, F. A1 - Emmerling, Franziska A1 - Shen, Z. A1 - You, X.-Z. A1 - Rurack, Knut T1 - A core-modified Rubyrin with meso-aryl substituents and phenanthrene-fused pyrrole rings: a highly conjugated near-infrared dye and Hg2+ probe JF - Angewandte Chemie / International Edition KW - Fluorescence KW - Mercury KW - NIR dyes KW - Porphyrinoids KW - Sensors PY - 2008 DO - https://doi.org/10.1002/Anie.200702854 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 47 IS - 1 SP - 193 EP - 197 PB - Wiley-VCH CY - Weinheim AN - OPUS4-16448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mayer-Enthart, Elke A1 - Sialelli, Julien A1 - Rurack, Knut A1 - Resch-Genger, Ute A1 - Köster, D. A1 - Seitz, H. T1 - Toward Improved Biochips Based on Rolling Circle Amplification - Influences of the Microenvironment on the Fluorescence Properties of Labeled DNA Oligonucleotides JF - Annals of the New York academy of sciences KW - Rolling circle amplification KW - Fluorescence KW - Biochips KW - Microarrays KW - Signal amplification KW - Cy3-labeled oligonucleotides KW - DNA technology PY - 2008 DO - https://doi.org/10.1196/annals.1430.022 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 287 EP - 292 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhr, Holger A1 - Trieflinger, C. A1 - Rurack, Knut A1 - Daub, J. T1 - Proton- and Redox-Controlled Switching of Photo- and Electrochemiluminescence in Thiophenyl-Substituted Boron-Dipyrromethene Dyes JF - Chemistry - A European journal N2 - A luminescent molecular switch in which the active thiol/disulfide switching element is attached to a meso-phenyl-substituted boron-dipyrromethene (BDP) chromophore as the signalling unit is presented. The combination of these two functional units offers great versatility for multimodal switching of luminescence: 1) deprotonation/protonation of the thiol/thiolate moiety allows the highly fluorescent meso-p-thiophenol-BDP and its nonfluorescent thiolate analogue to be chemically and reversibly interconverted, 2) electrochemical oxidation of the monomeric dyes yields the fluorescent disulfide-bridged bichromophoric dimer, also in a fully reversible process, and 3) besides conventional photoexcitation, the well separated redox potentials of the BDP also allow the excited BDP state to be generated electrochemically (i.e., processes 1) and 2) can be employed to control both photo- and electrochemiluminescence (ECL) of the BDP). The paper introduces and characterizes the various states of the switch and discusses the underlying mechanisms. Investigation of the ortho analogue of the dimer provided insight into potential chromophore-chromophore interactions in such bichromophoric architectures in both the ground and the excited state. Comparison of the optical and redox properties of the two disulfide dimers further revealed structural requirements both for redox switches and for ECL-active molecular ensembles. By employing thiol/disulfide switching chemistry and BDP luminescence features, it was possible to create a prototype molecular ensemble that shows both fully reversible proton- and redox-gated electrochemiluminescence. KW - Boron-dipyrromethene KW - Electrochemiluminescence KW - Fluorescence KW - Molecular switches KW - Redox chemistry KW - Thiol/disulfide chemistry KW - Fluoreszenz KW - Elektrochemilumineszenz KW - Redox-Kontrolle KW - Molekulare Sensoren PY - 2006 DO - https://doi.org/10.1002/chem.200500729 SN - 0947-6539 SN - 1521-3765 VL - 12 IS - 3 SP - 689 EP - 700 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-12175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shen, Z. A1 - Röhr, Holger A1 - Rurack, Knut A1 - Uno, H. A1 - Spieles, Monika A1 - Schulz, Burkhard A1 - Reck, Günter A1 - Ono, N. T1 - Boron-Diindomethene (BDI) Dyes and Their Tetrahydrobicyclo Precursors - en Route to a New Class of Highly Emissive Fluorophores for the Red Spectral Range JF - Chemistry - A European journal N2 - The X-ray crystallographic, optical spectroscopic, and electrochemical properties of a newly synthesized class of boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors (bc-BDP) are presented. The BDI chromophore was designed to show intensive absorption and strong fluorescence in an applicationary advantageous spectral range. Its modular architecture permits fusion of a second subunit, for example, a receptor moiety to the dye's core to yield directly linked yet perpendicularly prearranged composite systems. The synthesis was developed to allow facile tuning of the chromophore platform and to thus adjust its redox properties. X-ray analysis revealed a pronounced planarity of the chromophore in the case of the BDIs, which led to a remarkable close packing in the crystal of the simplest derivative. On the other hand, deviation from planarity was found for the diester-substituted bc-BDP benzocrown that exhibits a butterfly-like conformation in the crystal. Both families of dyes show charge- or electron-transfer-type fluorescence-quenching characteristics in polar solvents when equipped with a strong donor in the meso-position of the core. These processes can be utilized for signaling purposes if an appropriate receptor is introduced. Further modification of the chromophore can invoke such a guest-responsive intramolecular quenching process, also for receptor groups of low electron density, for example, benzocrowns. In addition to the design of various prototype molecules, a promising fluoroionophore for Na+ was obtained that absorbs and emits in the 650 nm region and shows a strong fluorescence enhancement upon analyte binding. Furthermore, investigation of the remarkable solvatokinetic fluorescence properties of the butterfly-like bc-BDP derivatives suggested that a second intrinsic nonradiative deactivation channel can play a role in the photophysics of boron-dipyrromethene dyes. KW - Charge KW - Transfer KW - Dyes/pigments KW - Electron transfer KW - Fluorescence KW - Farbstoffe KW - Chemosensoren KW - NIR-Bereich KW - Photophysik KW - Röntgenstrukturanalyse PY - 2004 DO - https://doi.org/10.1002/chem.200400173 SN - 0947-6539 SN - 1521-3765 VL - 10 SP - 4853 EP - 4871 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-4125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trieflinger, C. A1 - Rurack, Knut A1 - Daub, J. T1 - "Turn ON/OFF your LOV light": Bordipyrromethen-Flavin-Dyaden als biomimetische, von der LOV-Domäne abgeleitete Schalter JF - Angewandte Chemie KW - Boron-dipyrromethene KW - Flavin KW - Thiol/disulfide KW - Fluorescence KW - Molecular switching KW - Photoreceptor mimicks PY - 2005 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 117 IS - 15 SP - 2328 EP - 2331 PB - Wiley-VCH CY - Weinheim AN - OPUS4-7305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sloniec, Jagoda A1 - Schnurr, M. A1 - Witte, C. A1 - Resch-Genger, Ute A1 - Schröder, L. A1 - Hennig, Andreas T1 - Biomembrane interactions of functionalized cryptophane-A: combined fluorescence and 129Xe NMR studies of a bimodal contrast agent JF - Chemistry - A European journal N2 - Fluorescent derivatives of the 129Xe NMR contrast agent cryptophane-A were obtained by functionalization with near infrared fluorescent dyes DY680 and DY682. The resulting conjugates were spectrally characterized, and their interaction with giant and large unilamellar vesicles of varying phospholipid composition was analyzed by fluorescence and NMR spectroscopy. In the latter, a chemical exchange saturation transfer with hyperpolarized 129Xe (Hyper-CEST) was used to obtain sufficient sensitivity. To determine the partitioning coefficients, we developed a method based on fluorescence resonance energy transfer from Nile Red to the membrane-bound conjugates. This indicated that not only the hydrophobicity of the conjugates, but also the phospholipid composition, largely determines the membrane incorporation. Thereby, partitioning into the liquid-crystalline phase of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was most efficient. Fluorescence depth quenching and flip-flop assays suggest a perpendicular orientation of the conjugates to the membrane surface with negligible transversal diffusion, and that the fluorescent dyes reside in the interfacial area. The results serve as a basis to differentiate biomembranes by analyzing the Hyper-CEST signatures that are related to membrane fluidity, and pave the way for dissecting different contributions to the Hyper-CEST signal. KW - Biosensors KW - Fluorescence KW - FRET KW - Hyperpolarization KW - Lipids KW - Xenon PY - 2013 DO - https://doi.org/10.1002/chem.201203773 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 9 SP - 3110 EP - 3118 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Felbeck, Tom A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Grabolle, Markus A1 - Lezhnina, M.M. A1 - Kynast, U.H. A1 - Resch-Genger, Ute T1 - Nile-red-nanoclay hybrids: Red emissive optical probes for use in aqueous dispersion JF - Langmuir N2 - Water-dispersible and (bio)functionalizable nanoclays have a considerable potential as inexpensive carriers for organic molecules like drugs and fluorophores. Aiming at simple design strategies for red-emissive optical probes for the life sciences from commercial precursors with minimum synthetic effort, we systematically studied the dye loading behavior and stability of differently functionalized laponites. Here, we present a comprehensive study of the absorption and emission properties of the red emissive hydrophobic and neutral dye Nile Red, a well-known polarity probe, which is almost insoluble and nonemissive in water. Adsorption of this probe onto disk-shaped nanoclays was studied in aqueous dispersion as function of dye concentration, in the absence and presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB) assisting dye loading, and as a function of pH. This laponite loading strategy yields strongly fluorescent nanoclay suspensions with a fluorescence quantum yield of 0.34 at low dye loading concentration. The dye concentration-, CTAB-, and pH-dependent absorption, fluorescence emission, and fluorescence excitation spectra of the Nile-Red6#8211;nanoclay suspensions suggest the formation of several Nile Red species including emissive Nile Red monomers facing a polar environment, nonemissive H-type dimers, and protonated Nile Red molecules that are also nonfluorescent. Formation of all nonemissive Nile Red species could be suppressed by modification of the laponite with CTAB. This underlines the great potential of properly modified and functionalized laponite nanodisks as platform for optical probes with drug delivery capacities, for example, for tumor and therapy imaging. Moreover, comparison of the Nile Red dimer absorption spectra with absorption spectra of previously studied Nile Red aggregates in dendrimer systems and micelles and other literature systems reveals a considerable dependence of the dimer absorption band on microenvironment polarity which has not yet been reported so far for H-type dye aggregates. KW - Nile Red KW - Dye KW - Laponite KW - Nanoclay KW - Photoluminescence KW - Fluorescence KW - Polarity probe KW - Aggregate KW - Dimer PY - 2013 UR - http://pubs.acs.org/doi/pdf/10.1021/la402165q DO - https://doi.org/10.1021/la402165q SN - 0743-7463 SN - 1520-5827 VL - 29 IS - 36 SP - 11489 EP - 11497 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Rurack, Knut T1 - Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC technical report) JF - Pure and applied chemistry N2 - Procedures for the determination of photoluminescence quantum yields with optical methods are addressed, and challenges associated with these measurements are discussed. Special emphasis is dedicated to relative measurements of fluorescent (i.e., short excited-state lifetime), transparent, dilute dye solutions in conventional cuvettes in a 0°/90° measurement geometry. Recommendations on the selection of suitable quantum yield standards are presented, and requirements for the documentation of photoluminescence quantum yields are derived. KW - Absorption KW - Dilute dye solutions KW - Fluorescence KW - IUPAC Analytical Chemistry Division KW - IUPAC Organic and Biomolecular Chemistry Division KW - IUPAC Physical and Biophysical chemistry division KW - Luminescence KW - Photoluminescence quantum yields PY - 2013 DO - https://doi.org/10.1351/PAC-REP-12-03-03 SN - 0033-4545 SN - 1365-3075 VL - 85 IS - 10 SP - 2005 EP - 2026 PB - Union CY - Research Triangle Park, NC AN - OPUS4-29323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Schüttrigkeit, T. A1 - Franzl, T. A1 - Resch-Genger, Ute T1 - Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions JF - Applied spectroscopy N2 - The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (φf) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute φf values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. KW - Lifetime KW - Fluorescence KW - Luminescence KW - Quantum yield KW - Quantum efficiency KW - Integrating sphere KW - Reabsorption KW - Rhodamine 101 KW - Quinine sulfate dihydrate KW - Method KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy PY - 2010 DO - https://doi.org/10.1366/000370210791666390 SN - 0003-7028 SN - 1943-3530 VL - 64 IS - 7 SP - 733 EP - 741 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-22089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Damerau, Thomas A1 - Sabelus, Silke A1 - Wachtendorf, Volker A1 - Hennecke, Manfred A1 - Greiner, A. T1 - Photochemische und thermische Stabilität eines Phenylen-Vinylen-Polymeren JF - GIT : Labor-Fachzeitschrift KW - Photostability KW - Fluorescence KW - Chemiluminescence PY - 1996 SN - 0016-3538 VL - 40 IS - 7 SP - 710 EP - 712 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-23205 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Mathejczyk, J.E. A1 - Brehm, Robert A1 - Würth, Christian A1 - Gomes, F.R. A1 - Dullin, C. A1 - Napp, J. A1 - Alves, F. A1 - Resch-Genger, Ute T1 - Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development JF - Biomaterials N2 - Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. KW - Nanoparticle KW - Fluorescence KW - In vitro test KW - In vivo test KW - Surface modification KW - Cytotoxicity PY - 2013 DO - https://doi.org/10.1016/j.biomaterials.2012.09.028 SN - 0142-9612 VL - 34 IS - 1 SP - 160 EP - 170 PB - Elsevier CY - Oxford AN - OPUS4-26877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Bremser, Wolfram A1 - Pfeifer, Dietmar A1 - Spieles, Monika A1 - Hoffmann, Angelika A1 - DeRose, P.C. A1 - Zwinkels, J. C. A1 - Gauthier, F. A1 - Ebert, B. A1 - Taubert, R.D. A1 - Voigt, J. A1 - Hollandt, J. A1 - Macdonald, R. T1 - State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards JF - Analytical chemistry N2 - In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures. KW - Fluorescence KW - Photoluminescence KW - Dye KW - Uncertainty KW - Method comparison KW - Standard KW - Method comparison KW - Spectral correction KW - Spectral fluorescence standard PY - 2012 DO - https://doi.org/10.1021/ac203451g SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 9 SP - 3899 EP - 3907 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Simple strategies towards bright polymer particles via one-step staining procedures JF - Dyes and pigments N2 - In order to develop simple and versatile procedures for the preparation of red emissive particles, various one-step swelling procedures for the loading of fluorophores into nanometer- and micrometer-sized polystyrene particles were systematically assessed. Parameters studied for model dyes from common dye classes include the composition of the swelling medium, dye charge and polarity, dye concentration, and particle surface chemistry. The dye loading procedures were compared based upon the efficiency of dye incorporation, fluorescence intensity, and colloidal stability of the resulting particles as well as the absence of dye leaking as determined by absorption and fluorescence spectroscopy, flow cytometry, and measurements of zeta potentials. In addition, for the first time, the influence of the amount of incorporated dye on the absolute fluorescence quantum yield and brightness of the fluorescent particles was investigated for selected chromophores in differently sized particles using a custom-made calibrated integrating sphere setup. Our results demonstrate the general suitability of these one-step loading procedures for efficient particle staining with neutral, zwitterionic, and charged fluorophores like oxazines, coumarines, squaraines, xanthenes, and cyanines emitting in the visible and near infrared. Dye polarity was identified as a suitable tool to estimate the loading efficiency of fluorophores into these polymer particles. KW - Fluorescence KW - Polystyrene KW - Particles KW - Encapsulation KW - Quantum yield KW - Zeta potential KW - Method KW - Label KW - Particle KW - Polymer KW - Absolute fluorescence quantum yield KW - Fluorophore KW - Dye content KW - Surface groups KW - Size KW - Brightness PY - 2012 DO - https://doi.org/10.1016/j.dyepig.2012.01.021 SN - 0143-7208 SN - 1873-3743 VL - 94 IS - 2 SP - 247 EP - 257 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-25481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Bremser, Wolfram A1 - Pfeifer, Dietmar A1 - Spieles, Monika A1 - Hoffmann, Angelika A1 - DeRose, P.C. A1 - Zwinkels, J. C. A1 - Gauthier, F. A1 - Ebert, B. A1 - Taubert, D. A1 - Monte, C. A1 - Voigt, J. A1 - Hollandt, J. A1 - Macdonald, R. T1 - State-of-the art comparability of corrected emission spectra. 1. spectral correction with physical transfer standards and spectral fluorescence standards by expert laboratories JF - Analytical chemistry N2 - The development of fluorescence applications in the life and material sciences has proceeded largely without sufficient concern for the measurement uncertainties related to the characterization of fluorescence instruments. In this first part of a two-part series on the state-of-the-art comparability of corrected emission spectra, four National Metrology Institutes active in high-precision steady-state fluorometry performed a first comparison of fluorescence measurement capabilities by evaluating physical transfer standard (PTS)-based and reference material (RM)-based calibration methods. To identify achievable comparability and sources of error in instrument calibration, the emission spectra of three test dyes in the wavelength region from 300 to 770 nm were corrected and compared using both calibration methods. The results, obtained for typical spectrofluorometric (0°/90° transmitting) and colorimetric (45°/0° front-face) measurement geometries, demonstrated a comparability of corrected emission spectra within a relative standard uncertainty of 4.2% for PTS- and 2.4% for RM-based spectral correction when measurements and calibrations were performed under identical conditions. Moreover, the emission spectra of RMs F001 to F005, certified by BAM, Federal Institute for Materials Research and Testing, were confirmed. These RMs were subsequently used for the assessment of the comparability of RM-based corrected emission spectra of field laboratories using common commercial spectrofluorometers and routine measurement conditions in part 2 of this series (subsequent paper in this issue). KW - Fluorescence KW - Photoluminescence KW - Dye KW - Uncertainty KW - Method comparison KW - Standard KW - Method comparison KW - Spectral correction KW - Spectral fluorescence standard PY - 2012 DO - https://doi.org/10.1021/ac2034503 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 9 SP - 3889 EP - 3898 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linck, Lena A1 - Reiß, E. A1 - Bier, F. A1 - Resch-Genger, Ute T1 - Direct labeling rolling circle amplification as a straightforward signal amplification technique for biodetection formats JF - Analytical methods N2 - Biodetection formats, such as DNA and antibody microarrays, are valuable tools in the life sciences, but for some applications, the detection limits are insufficient. A straightforward strategy to obtain signal amplification is the rolling circle amplification (RCA), an easy, isothermal, and enzymatic nucleic acid synthesis that has already been employed successfully to increase the signal yield for several single-analyte and multiplexing assays in conjunction with hybridization probes. Here, we systematically investigated the parameters responsible for the RCA driven signal amplification with fluorescent labels, such as the type of fluorophore chosen, labeling strategy, composition of reaction solution, and number of handling steps. In labeling strategies, post-synthetic labeling via a Cy3-hybridization probe was compared to the direct incorporation of fluorescent Cy3–dUTP and DY-555–dUTP into the nascent strand during synthesis. With our direct labeling protocol, the assay's runtime and handling steps could be reduced while the signal yield was increased. These features are very attractive for many detection formats but especially for point-of-care diagnostic kits that need to be simple enough to be performed by scientifically untrained personnel. KW - Method KW - Label KW - Fluorescence KW - RCA KW - Amplification KW - Oligonucleotide KW - DNA KW - Assay KW - Fluorophore KW - Dye content KW - Surface PY - 2012 DO - https://doi.org/10.1039/c2ay05760c SN - 1759-9660 SN - 1759-9679 VL - 4 IS - 5 SP - 1215 EP - 1220 PB - RSC Publ. CY - Cambridge AN - OPUS4-25839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Biyikal, Mustafa A1 - Hecht, Mandy A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut A1 - Sancenón, F. ED - Gale, P.A. ED - Steed, J.W. T1 - Supramolecular hybrid nanomaterials as prospective sensing platforms T2 - Supramolecular chemistry: From molecules to nanomaterials N2 - Supramolecular interactions are vital processes in many chemical sensors, biochemical assays, and other analytical detection schemes. On the background of the current, rapidly developing, and constantly changing requirements for (bio)analytical techniques, the classical molecular host is increasingly overburdened to accomplish a specific analytical task with the desired selectivity and sensitivity. Instead, other signaling strategies have to be conceived that overcome the limits in signal output, dynamic range, or compound targeting, which are imminent to various traditional methods. A very promising approach is the combination of concepts of supramolecular chemistry with nanostructured or nanoscopic inorganic materials, that is, the development of hybrid sensor materials. Such hybrids often lead to improved functionality and enhanced performance, and the present chapter discusses the contributory features in relation to the major aspects, which are related to the enhanced coordination by the preorganization of binding sites, signal amplification by the preorganization on surfaces, aggregation‐mediated signaling, surface‐modification‐based signaling, the tuning of selectivity through polarity and size, and gated signaling. KW - Supramolekulare Chemie KW - Optische Sonden KW - Nanotechnologie KW - Hybridmaterialien KW - Fluorescence KW - Hybrid nanomaterials KW - Optical sensors KW - Redox sensors KW - Supramolecular chemistry PY - 2012 SN - 978-0-470-74640-0 DO - https://doi.org/10.1002/9780470661345.smc199 SP - 3669 EP - 3698 PB - John Wiley & Sons AN - OPUS4-26118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wan, Wei A1 - Biyikal, Mustafa A1 - Wagner, R. A1 - Sellergren, B. A1 - Rurack, Knut T1 - Enantioselective fluorescence response of molecularly imprinted polymers (MIPs) toward carbobenzyloxy- (Cbz) protected amino acids T2 - 11. Dresdner Sensor Symposium 2013 (Proceedings) N2 - Integration of a polymerisable fluorescent urea-nitrobenzoxadiazole monomer 1 into a few-nanometre thin molecularly imprinted polymer (MIP) shell coated onto a 300 nm silica core with the tetrabutylammonium salt of N-carbobenzyloxy-L-phenylalanine (Cbz- or Z-ʟ-Phe) as the imprinted template yields core/shell MIP nanoparticles that respond to the designated analyte with a strong fluorescence increase in the visible spectral range. The system shows promising imprinting and enantioselectivity factors of 3.6 and 1.9 when benzylmethylacrylate (BMA) is used as co-monomer and ethylene glycol dimethacrylate (EDMA) as cross-linker. A second, naphthalimide-based fluorescent urea 2 is employed in the preparation of MIP thin-films and monolithic polymers for separation techniques. Spectroscopic and chromatographic studies of the MIPs with the analytes Z-ʟ-Phe, Z-ʟ-glutamic acid (Z-ʟ-Glu) and penicilin G (PenG) revealed the (enantio)selective discrimination behaviour of these materials. T2 - 11. Dresdner Sensor Symposium 2013 CY - Dresden, Germany DA - 09.12.2013 KW - Enantioselectivity KW - Molecular imprinting KW - Fluorescence KW - Core-shell nanoparticles KW - Chromatography PY - 2013 SN - 978-3-9813484-5-3 DO - https://doi.org/10.5162/11dss2013/3.2 SP - 53 EP - 58 CY - Wunstorf AN - OPUS4-29818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinnasamy, R. A1 - Ravi, J. A1 - Pradeep, V.V. A1 - Manoharan, D. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials JF - Chemistry-A European Journal N2 - Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol (1), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol (2). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2, confirming their light-trapping ability. KW - Crystal growth KW - Fluorescence KW - Mechanophotonics KW - Micromanipulation KW - Optical waveguides PY - 2022 DO - https://doi.org/10.1002/chem.202200905 SN - 0947-6539 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-55018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Elahi, T. A1 - Lübkemann, F. A1 - Hübner, Oskar A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization JF - Scientific reports N2 - Luminescence-encoded microbeads are important tools for many applications in the life and material sciences that utilize luminescence detection as well as multiplexing and barcoding strategies. The preparation of such beads often involves the staining of premanufactured beads with molecular luminophores using simple swelling procedures or surface functionalization with layer-by-layer (LbL) techniques. Alternatively, these luminophores are sterically incorporated during the polymerization reaction yielding the polymer beads. The favorable optical properties of semiconductor quantum dots (QDs), which present broadly excitable, size-tunable, narrow emission bands and low photobleaching sensitivity, triggered the preparation of beads stained with QDs. However, the colloidal nature and the surface chemistry of these QDs, which largely controls their luminescence properties, introduce new challenges to bead encoding that have been barely systematically assessed. To establish a straightforward approach for the bead encoding with QDs with minimized loss in luminescence, we systematically assessed the incorporation of oleic acid/oleylamine-stabilized CdSe/CdS-core/shell-QDs into 0.5–2.5 μm-sized polystyrene (PS) microspheres by a simple dispersion polymerization synthesis that was first optimized with the organic dye Nile Red. Parameters addressed for the preparation of luminophore-encoded beads include the use of a polymer-compatible ligand such as benzyldimethyloctadecylammonium chloride (OBDAC) for the QDs, and crosslinking to prevent luminophore leakage. The physico-chemical and optical properties of the resulting beads were investigated with electron microscopy, dynamic light scattering, optical spectroscopy, and fluorescence microscopy. Particle size distribution, fluorescence quantum yield of the encapsulated QDs, and QD leaking stability were used as measures for bead quality. The derived optimized bead encoding procedure enables the reproducible preparation of bright PS microbeads encoded with organic dyes as well as with CdSe/CdS-QDs. Although these beads show a reduced photoluminescence quantum yield compared to the initially very strongly luminescent QDs, with values of about 35%, their photoluminescence quantum yield is nevertheless still moderate. KW - Polymerization KW - Quantum dots KW - Microbeads KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553430 DO - https://doi.org/10.1038/s41598-022-16065-x SN - 2045-2322 VL - 12 SP - 1 EP - 16 PB - Nature Publishing Group CY - London AN - OPUS4-55343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics JF - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545027 DO - https://doi.org/10.1002/chem.202104525 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Reichenauer, F. A1 - Kitzmann, W.R. A1 - Kerzig, Ch. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Efficient Triplet-Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism JF - Angewandte Chemie International Edition N2 - Sensitized triplet-triplet annihilation upconversion (sTTA-UC) mainly relies on precious metal complexes thanks to their high intersystem crossing (ISC) efficiencies, excited state energies, and lifetimes, while complexes of abundant first-row transition metals were only rarely utilized and with often moderate UC quantum yields. [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) containing earth-abundant chromium possesses an absorption band suitable for green light excitation, a doublet excited state energy matching the triplet energy of 9,10-diphenyl anthracene (DPA), a close to millisecond excited state lifetime, and high photostability. Combined ISC and doublet-triplet energy transfer from excited [Cr(bpmp)2]3+ to DPA gives 3DPA with close-to-unity quantum yield. TTA of 3DPA furnishes greento-blue UC with a quantum yield of 12.0 % (close to the theoretical maximum). Sterically less-hindered anthracenes undergo a [4+4] cycloaddition with [Cr(bpmp)2]3+ and green light. KW - Fluorescence KW - Optical probe KW - Sensor KW - ph KW - Quantum yield KW - Quality assurance KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory KW - TTA-UC KW - Energy transfer KW - Upconversion KW - Mechanism KW - Anthracene KW - Photochemistry KW - DFT KW - Cycloaddition KW - Transient absorbtion spectroscopy PY - 2022 DO - https://doi.org/10.1002/anie.202202238 VL - 61 IS - 24 SP - 1 EP - 8 PB - Wiley online library AN - OPUS4-54604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Kitzmann, W.R. A1 - Weigert, Florian A1 - Förster, Ch. A1 - Wang, X. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby JF - ChemPhotoChem N2 - The molecular ruby analogue [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) exhibits near infrared (NIR) emission with a high photoluminescence (PL) quantum yield ΦPL of 11 % and a lifetime of 898 μs in deaerated water at room temperature. While ligand-based control of the photophysical properties has received much attention, influences of the counter anions and microenvironment are still underexplored. In this study, the luminescence properties of the molecular ruby were systematically examined for the counter anions Cl−, Br−, [BF4]−, [PF6]−, [BPh4]−, and [BArF24]− in acetonitrile (MeCN) solution, in crystals, and embedded into polystyrene nanoparticles (PSNP). Stern-Volmer analyses of the oxygen quenching studies in the intensity and lifetime domain showed the highest oxygen sensitivity of the complexes with the counter anions of [BF4]− and [BArF24]−, which also revealed the longest luminescence lifetimes. Embedding [Cr(ddpd)2][PF6]3 in PSNPs and shielding with poly(vinyl alcohol) yields a strongly NIR-emissive oxygen-insensitive material with a record ΦPL of 15.2 % under ambient conditions. KW - Fluorescence KW - Sensor KW - Oxygen KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Solid state KW - X-Ray analysis KW - Structure-property relationship KW - Nano KW - Polymer KW - Particle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546057 DO - https://doi.org/10.1002/cptc.202100296 SN - 2367-0932 VL - 6 IS - 6 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandi, V.G. A1 - Luciano, M.P. A1 - Saccomano, M. A1 - Patel, N.L. A1 - Bischof, Th. S. A1 - Lingg, J.G.P. A1 - Tsrunchev, P.T. A1 - Nix, M.N. A1 - Ruehle, Bastian A1 - Sanders, C. A1 - Riffle, L. A1 - Robinson, C.M. A1 - Difilippantonio, S. A1 - Kalen, J.D. A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Bruns, O.T. A1 - Schnermann, M. T1 - Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines JF - Nature Methods N2 - Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging. KW - Photoluminescence KW - Fluorescence KW - Dye KW - Cyanine KW - Antibody KW - Bioconjugate KW - Conjugate KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Mechanism KW - Imaging KW - Application KW - Contrast agent KW - Bioimaging PY - 2021 DO - https://doi.org/10.1038/s41592-022-01394-6 VL - 19 IS - 3 SP - 353 EP - 358 PB - Nature Research AN - OPUS4-54465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out JF - Materials Advances N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines JF - Chemical European Journal N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531123 DO - https://doi.org/10.1002/chem.202102052 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores JF - Physical chemistry chemical physics: PCCP N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichenauer, F. A1 - Wang, Cui A1 - Förster, C. A1 - Boden, P. A1 - Ugur, N. A1 - Báez-Cruz, R. A1 - Kalmbach, J. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Ramanan, C. A1 - Niedner-Schatteburg, G. A1 - Gerhards, M. A1 - Seitz, M. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+ JF - Journal of th American Chemical Society N2 - Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge Transfer states described by spatially separated orbitals, the energies of spinflip states cannot straightforwardly be predicted as Pauli Repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl) pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand’s methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and Ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues. KW - Fluorescence KW - Optical probe KW - Sensor KW - PH KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530548 DO - https://doi.org/10.1021/jacs.1c05971 VL - 143 IS - 30 SP - 11843 EP - 11855 PB - ACS Publications AN - OPUS4-53054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Fürstenwerth, Paul Christian A1 - Witte, J. F. A1 - Resch-Genger, Ute T1 - Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values JF - New Journal of Chemistry N2 - We present the rational design, synthesis and spectroscopic characterization of a novel dual excitation, three color emitting, pH-responsive fluorescent probe consisting of two phenanthrene and one rhodamine B units linked by click chemistry. The rhodamine moiety, excitable at λEx = 315 nm and at λEx = 560 nm in its ring-opened form, provides the pH-responsive fluorophore, while the pH-insensitive phenanthrene, excited at λEx = 315 nm, serves as inert internal reference, The presence of two phenanthrene moieties enables a blue monomer and a blueish green excimer emission at 351 nm and 500 nm, respectively. Opening of the rhodamine B spirolactam ring at an acidic pH below 5.0 (pKa = 2.59 ± 0.04) switches on its emission at 580 nm. Simultaneously, the phenanthrene excimer emission decreases caused by a change in orientation of the phenanthrene units, while the monomer emission is barely affected. This sensor design enables ratiometric measurements in the low acidic pH range utilizing the intensity ratios of the rhodamine B and phenanthrene excimer emission at 580 nm and 500 nm. Alternatively, also the intensity ratios of the rhodamine B and the phenanthrene monomer emission could be exploited or the sum of the phenanthrene monomer and excimer fluorescence. To the best of our knowledge, this is the first report of ratiometric sensing utilizing such a versatile type of tricolor emissive dyad probe bearing phenanthrene moieties and showing phenanthrene monomer and excimer emission. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rhodamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Chemodosimeter KW - Phenanthrene KW - Ratiometric KW - Dyad PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530554 DO - https://doi.org/10.1039/d1nj01573g SN - 1144-0546 VL - 45 IS - 31 SP - 13755 EP - 13762 PB - Royal Society of Chemistry AN - OPUS4-53055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Radunz, Sebastian A1 - Resch-Genger, Ute T1 - Novel PET-Operated Rosamine Sensor Dyes with Substitution Pattern-Tunable pKa Values and Temperature Sensitivity JF - New Journal of Chemistry N2 - We present the synthesis and characterization of a family of regioisomerically pure pH-sensitive rosamine fluorophores consisting of xanthene fluorophore cores, which determine the dyes’ photophysical properties such as excitation/emission wavelength, fluorescence quantum yield, and fluorescence lifetime, and differently substituted phenol moieties. The hydroxyl substituent of the phenol moiety introduces a pH sensitivity of the dyes’ fluorescence exploiting a photoinduced electron transfer (PET), that leads to a protonation-induced switching ON of the rosamine emission. Rational tuning of the pKa value of the rosamine fluorescence between 4 to 9 is achieved by altering the substitution pattern and degree of bromination of the phenolic subunits. Additionally, a temperature sensitivity of the fluorescence quantum yield is introduced or suppressed based upon the degree of rigidity of the xanthene scaffold. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rosamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurancemechanism KW - temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530562 DO - https://doi.org/10.1039/d1nj02505h VL - 45 IS - 31 SP - 13934 EP - 13940 PB - Royal Society of Chemistry AN - OPUS4-53056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo JF - Frontiers in oncology N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527843 DO - https://doi.org/10.3389/fonc.2021.654300 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Sinha, S. A1 - Krappe, A. A1 - Joswig, J.-O. A1 - Götze, J. P. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Fluorescence Quenching in J‑Aggregates through the Formation of Unusual Metastable Dimers JF - The Journal of Physical Chemistry N2 - Molecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, Jaggregates are fluorescent displaying a redshifted peak. In this publication, we employ a combined approach of experiment and theory to study the complex aggregation features and photophysical properties of diaminodicyanoquinone derivatives, which show unusual and puzzling nonfluorescent redshifted Absorption bands upon aggregation. Our theoretical analysis demonstrates that stable aggregates do not account for the experimental observations. Instead, we propose an unprecedented mechanism involving metastable dimeric species formed from stable dimers to generate nonfluorescent J-aggregates. These results represent a novel kind of aggregation-induced optical effect and may have Broad implications for the photophysics of dye aggregates. KW - Fluorescence KW - Llifetime KW - Dye KW - Quantum yield KW - Label KW - Reporter KW - Aggregation KW - Monomer KW - Heory KW - Mechanism KW - photophysics PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.1c01600 SN - 1520-5207 VL - 125 IS - 17 SP - 4438 EP - 4446 PB - ACS Publikations AN - OPUS4-52619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community endeavor to advance quality assessment and reproducibility in light microscopy JF - Nature methods N2 - The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through Quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for Hardware calibration and image acquisition, management and analysis. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 DO - https://doi.org/10.1038/s41592-021-01162-y SN - 1548-7105 VL - 18 SP - 1424 EP - 1427 PB - Nature Publishing Group CY - London AN - OPUS4-52722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell JF - Methods in Molecular Biology N2 - Dual-fluorescent molecularly imprinted nanoparticles with a red-emissive carbon nanodot-doped silica core and a chlorogenic acid-imprinted fluorescent polymer layer are prepared and their use in ratiometric fluorometric analysis is described. Nanoparticle probes consisting of a shielded and stably emitting core and a shell with embedded binding sites that indicates the presence of an analyte with a change in emission allow for internally referenced measurements potentially accounting for detrimental influences from instrument drifts, light source fluctuations or sensor materials-related inhomogeneities. KW - Molecular imprinting KW - Fluorescence KW - Core-shell particles KW - Chlorogenic acid KW - Ratiometric measurement PY - 2021 DO - https://doi.org/10.1007/978-1-0716-1629-1_17 VL - 2359 SP - 195 EP - 208 PB - Springer CY - Humana, New York, NY AN - OPUS4-53336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - “Green” Synthesis of Highly Luminescent Lead-Free Cs2AgxNa1-xBiyIn1-yCl6 Perovskites JF - Journal of Materials Chemistry C N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 DO - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Yang, J. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - Fluorescence temperature sensing of NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ nanoparticles at low and high temperatures JF - Nanotechnology N2 - NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ upconversion nanoparticles (UCNPs) were prepared using a solvothermal method, and the effects of key factors such as the content of sensitiser Nd 3+ and Yb3+ on their luminescence properties were investigated. The nanoparticles are homogeneous in size and well dispersed. Under 808 nm excitation, it can produce strong upconversion fluorescence. At the same time, the nanoparticles have good temperature-sensing properties at the thermally coupled energy levels of 700 nm and 646 nm for Tm3+. Using its fluorescence intensity ratio (FIR), accurate temperature measurements can be performed, and it has been found that it exhibits different temperature sensing properties in low and high-temperature regions. The maximum relative sensitivity was found to be 0.88% K-1 and 1.89% K-1 for the lowtemperature region of 285 K-345 K and the high-temperature region of 345 K-495 K. The nanoparticles were applied to the internal temperature measurement of lithium batteries and the actual high-temperature environment, respectively, and were found to have good temperature measurementt performance. KW - Fluorescence KW - Sensor KW - Temperature KW - Ratiometric KW - Lanthanide KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Upconversion nanoparticle PY - 2022 DO - https://doi.org/10.1088/1361-6528/ac84e4 SN - 1361-6528 VL - 33 IS - 34 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-55454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thekkeppat, N. P. A1 - Bhattacharya, Biswajit A1 - Tothadi, S. A1 - Ghosh, S. T1 - Mechanically flexible crystals of styryl quinoline derivatives JF - Journal of Molecular Structure N2 - Herein, we report three crystals of styryl quinoline derivatives. All these three crystals are mechanically flexible crystals, isostructural and also all of them comply with the common underlying features for elas- tic flexibility like absence of slip plane, criss-cross packing arrangement of neighbouring tapes, presence of weak and dispersive interactions such as halogen bonds, hydrogen bonds etc. The interactions facilitate easy movement of molecules under application of pressure thereby imparting elasticity. Further, the crys- tals were found to be blue light emitting making them promising candidates for optical waveguides. The optical properties were combined with flexibility by using crystal engineering approach towards achiev- ing various applications such as flexible OLEDs, optical waveguides, flexible optoelectronics etc. KW - Mechanical flexibility KW - Halogen bond KW - Fluorescence PY - 2022 DO - https://doi.org/10.1016/j.molstruc.2022.133293 SN - 0022-2860 VL - 1265 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-55549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Genger, C. A1 - Welker, P. A1 - Huebner, Oskar A1 - Resch-Genger, Ute T1 - Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies JF - Analytical Chemistry N2 - A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0−9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores. KW - Microparticle KW - Fluorescence KW - Sensor KW - pH KW - Quantum yield KW - Multiplexing KW - Imaging KW - Cell KW - Quality assurance KW - Nano KW - Polymer KW - Bioimaging KW - Particle KW - Application PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c00944 VL - 94 IS - 27 SP - 9656 EP - 9664 PB - ACS AN - OPUS4-55365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching JF - Dalton Transactions N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy JF - Applied nano materials N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 DO - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ralf A1 - Weigert, Florian A1 - Lesnyak, V. A1 - Leubner, S. A1 - Lorenz, T. A1 - Behnke, Thomas A1 - Dubavik, A. A1 - Joswig, J.-O. A1 - Resch-Genger, Ute A1 - Gaponik, N. A1 - Eychmüller, A. ED - Resch-Genger, Ute ED - Schneider, Ralf T1 - pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O JF - Physical Chemistry Chemical Physics N2 - The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which – together with alloyed CdₓHg₁₋ₓTe – are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D₂O and compared to the results from previous dilution studies with a set of thiol-capped Cd₁₋ₓHgₓTe SC NCs in D₂O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman’s test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H₂O compared to D₂O, underlining also the role of hydrogen bonding and solvent molecules. KW - Quantum dots KW - Fluorescence KW - Ligand analysis KW - Nano particles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371253 DO - https://doi.org/10.1039/c6cp03123d VL - 18 IS - 28 SP - 19083 EP - 19092 PB - RSC CY - Cambridge AN - OPUS4-37125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Dropa, T. A1 - Urban, M. A1 - Costero, A. M. A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut T1 - A rapid and sensitive strip-based quick test for nerve agents Tabun, Sarin, and Soman using BODIPY-modified silica materials JF - Chemistry - a European journal N2 - Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m−3 range in a few seconds. KW - Chemical warfare agents KW - Fluorescence KW - Hybrid sensor materials KW - Nerve gases KW - Test strip analysis PY - 2016 DO - https://doi.org/10.1002/chem.201601269 SN - 0947-6539 SN - 1521-3765 VL - 22 IS - 32 SP - 11138 EP - 11142 PB - Wiley CY - Online Library AN - OPUS4-37063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meiling, T. A1 - Cywinski, P. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific Reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly Brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. KW - Carbon dots KW - Quantum yield KW - Fluorescence KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367204 DO - https://doi.org/10.1038/srep28557 VL - 6 SP - Article 28557, 1 EP - 9 PB - Nature Publishing Group AN - OPUS4-36720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Sloniec-Myszk, Jagoda ED - Hennig, Andreas T1 - Chiral, J-aggregate-forming dyes for alternative signal modulation mechanisms in self-immolative enzyme-activatable optical probes JF - The Journal of Physical Chemistry / B N2 - Enzyme-activatable optical probes are important for future advances in cancer imaging, but may easily suffer from low signal-to-background ratios unless not optimized. To address this shortcoming, numerous mechanisms to modulate the fluorescence signal have been explored. We report herein newly synthesized probes based on selfimmolative linkers containing chiral J-aggregate-forming dyes. Signal modulation by formation of chiral J-aggregates is yet unexplored in optical enzyme probe design. The comprehensive characterization of the probes by absorption, CD, fluorescence, and time-resolved fluorescence spectroscopy revealed dye−dye interactions not observed for the free dyes in solution as well as dye−protein interactions with the enzyme. This suggested that J-aggregate formation is challenging to achieve with current probe design and that interactions of the dyes with the Enzyme may interfere with achieving high signal-to-background ratios. The detailed understanding of the interactions provided herein provides valuable guidelines for the future design of similar probes. KW - Signal amplification KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Dye KW - Cyanine KW - Characterization KW - Assay KW - Chiral KW - Aggregation KW - Activatable probe PY - 2016 DO - https://doi.org/10.1021/acs.jpcb.5b10526 SN - 1520-5207 SN - 1520-6106 VL - 120 IS - 5 SP - 877 EP - 885 PB - ACS Publications AN - OPUS4-35949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raúl A1 - Costero, A. M. A1 - Gil, S. A1 - Gavina, P. A1 - Rurack, Knut T1 - On the ion-pair recognition and indication features of a fluorescent heteroditopic host based on a BODIPY core JF - European journal of organic chemistry N2 - A fluorescent heteroditopic host for ion pairs and zwitterionic species has been synthesized. Its affinity towards a series of anions, cations and ion pairs in acetonitrile has been assessed, and the spectroscopic response has been evaluated. Solid–liquid extraction experiments of inorganic salts, α-amino acids and γ-aminobutyric acid (GABA) into acetonitrile solutions were performed, and the resulting complexes were analyzed by UV/Vis absorption, fluorescence and 1H NMR spectroscopy. The discrimination patterns observed have been rationalized in terms of the molecular topologies of the host and guests. KW - Sensors KW - Receptors KW - Ion-pair recognition KW - Zwitterion recognition KW - Fluorescence KW - Ionenpaar-Erkennung KW - Alkalimetallhalogenide KW - BODIPY KW - Zwitterionen-Erkennung KW - Fluoreszenz PY - 2014 DO - https://doi.org/10.1002/ejoc.201402214 SN - 1434-193X SN - 1099-0690 VL - 2014 IS - 19 SP - 4005 EP - 4013 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-30610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Pfeifer, L. A1 - Stein, K. A1 - Resch-Genger, Ute T1 - Homogeneous duplex tr-fret assay using quantum dots and ruthenium chelates as fret donors JF - Luminescence KW - Fluorescence KW - Assay KW - TR-FRET KW - Lifetime KW - Quantum dot KW - Ruthenium complex KW - Multiplexing KW - cAMP PY - 2008 SN - 1522-7235 SN - 1099-1271 SN - 1522-7243 VL - 23 IS - 4 SP - 226 EP - 227 PB - Wiley CY - Chichester AN - OPUS4-18993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Grabolle, Markus A1 - Cavaliere-Jaricot, S. A1 - Nitschke, R. A1 - Nann, T. T1 - Quantum dots versus organic dyes as fluorescent labels JF - Nature methods N2 - Suitable labels are at the core of luminescence and fluorescence imaging and sensing. One of the most exciting, yet also controversial, advances in label technology is the emerging development of quantum dots (QDs)—inorganic nanocrystals with unique optical and chemical properties but complicated surface chemistry—as in vitro and in vivo fluorophores. Here we compare and evaluate the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs. Our aim is to provide a better understanding of the advantages and limitations of both classes of chromophores, to facilitate label choice and to address future challenges in the rational design and manipulation of QD labels. KW - Fluorescence KW - Label KW - Quantum dot KW - Dye KW - Bioanalysis KW - Quantum yield KW - Multiplexing KW - Lifetime KW - Assay KW - Life sciences KW - FRET KW - Fluorescent reporter PY - 2008 DO - https://doi.org/10.1038/NMETH.1248 SN - 1548-7091 SN - 1548-7105 VL - 5 IS - 9 SP - 763 EP - 775 PB - Nature Publishing Group CY - New York, NY, USA AN - OPUS4-18992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engel, A. A1 - Ottermann, C. A1 - Klahn, J. A1 - Korb, T. A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Kynast, U. A1 - Rupertus, V. ED - Dan V. Nicolau, ED - Daniel L. Farkas, ED - Robert C. Leif, T1 - Anorganic fluorescence reference materials for decay time of fluorescence emission T2 - Imaging, manipulation, and analysis of biomolecules, cells, and tissues VI (Proceedings of SPIE) N2 - Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools, detection methods and imaging applications for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for steady state fluorescence diagnostics, a method having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers such as absorption/excitation cross sections and quantum yield. This has been done for different types of dopands in different materials such as glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Samples doped with several fluophores of different emission wavelengths and decay times are required for fluorescent multiplexing applications. Decay times shorter than 100 ns are of special interest. In addition, a proper knowledge is necessary of quantum efficiency in highly scattering media. Recently, quantum efficiency in YAG:Ce glass ceramics has been successfully investigated. Glass and glass ceramics doped with threefold charged rare earth elements are available. However, these samples have the disadvantage of emission decay times much longer than 1 microsecond, due to the excitation and emission of their optical forbidden electronic transitions. Therefore first attempts have been made to produce decay-time standards based on organic and inorganic fluophores. Stable LUMOGEN RED pigments and YAG:Ce phosphors are diluted simultaneously in silicone matrices using a wide range of concentrations between 0.0001 and 2 wt%. Organic LUMOGEN RED has decay times in the lower nanosecond range with a slight dependency on concentration and temperature. In addition, the well-known decay properties of inorganic YAG:Ce are observed also embedded in silicone matrix. Luminescent silicone layers are obtained with thicknesses between 150 and 300 m and no change of decay time, which has been determined to be between 60 and 62 ns. Finally, first results are shown for fluorescent CaF2:Pb glass ceramics embedded in a silicate glass matrix. Wavelength accuracy and lifetime are characterized for different environmental conditions such as temperature treatment and UV irradiation. Moreover, intensity patterns, e.g. line profiles and results, are discussed on homogeneity and photo and thermal stability, respectively. Fluorescence (steady state, decay time) and absorption (remission, absorption) spectroscopy are employed as diagnostic methods to get a microscopic view of the relevant physical processes. The work is funded by BMBF under project number 13N8849. KW - Fluorescence KW - Reference material KW - Glass KW - Glass ceramic KW - Phosphor KW - Doped glass and glass ceramics PY - 2008 SN - 978-0-8194-7034-8 DO - https://doi.org/10.1117/12.767633 VL - 6859 SP - 68591A-1 - 68591A-10 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-19800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pfeifer, Dietmar ED - Chris D. Geddes, T1 - Simple calibration and validation standards for fluorometry T2 - Reviews in fluorescence 2007 KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Glass KW - Quantum yield KW - Fluorescence intensity KW - Quality assurance PY - 2009 SN - 978-0-387-88721-0 DO - https://doi.org/10.1007/978-0-387-88722-7_1 SN - 1573-8086 N1 - Serientitel: Reviews in Fluorescence – Series title: Reviews in Fluorescence VL - 4 SP - 1 EP - 31 PB - Springer Science + Business Media AN - OPUS4-19830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Hoffmann, Angelika A1 - Pfeifer, Dietmar A1 - Engel, A. T1 - The toolbox of fluorescence standards: Flexible calibration tools for the standardization of fluorescence-based measurements JF - Proceedings / SPIE : P N2 - To improve the reliability of fluorescence data in the life and material sciences and to enable accreditation of fluorescence techniques, standardization concepts are required that guarantee and improve the comparability of fluorescence measurements. At the core of such concepts are simple and evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Similarly in need are fluorescence intensity standards for the quantification from measured intensities and for signal referencing, thereby accounting for excitation light-induced intensity fluctuations. These standards should be preferably certified, especially for use in regulated areas like medical diagnostics. This encouraged us to develop liquid and solid standards for different fluorescence parameters and techniques for use under routine measurement conditions in different formates. Special emphasis was dedicated to the determination and control of the spectral responsivity of detection systems, wavelength accuracy, homogeneity of illumination, and intensity referencing for e.g. spectrofluorometers, fluorescence sensors and confocal laser scanning fluorescence microscopes. Here, we will present design concepts and examples for mono- and multifunctional fluorescence standards that provide traceability to radiometric units and present a first step towards a toolbox of standards. KW - Fluorescence KW - Fluorescence standard KW - Calibration tool KW - Spectral fluorescence standard KW - Intensity standard KW - Instrument performance validation KW - Quality assurance KW - Traceability KW - Glass KW - Liquid standard PY - 2010 DO - https://doi.org/10.1117/12.853133 SN - 0277-786X SN - 0038-7355 SN - 0361-0748 VL - 7666 IS - 76661J SP - 1 EP - 12 PB - Soc. CY - Redondo Beach, Calif. [u.a.] AN - OPUS4-21595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - DeRose, P.C. A1 - Resch-Genger, Ute T1 - Recommendations for fluorescence instrument qualification: the new ASTM standard guide JF - Analytical chemistry N2 - Aimed at improving quality assurance and quantitation for modern fluorescence techniques, ASTM International (ASTM) is about to release a Standard Guide for Fluorescence, reviewed here. The guide's main focus is on steady state fluorometry, for which available standards and instrument characterization procedures are discussed along with their purpose, suitability, and general instructions for use. These include the most relevant instrument properties needing qualification, such as linearity and spectral responsivity of the detection system, spectral irradiance reaching the sample, wavelength accuracy, sensitivity or limit of detection for an analyte, and day-to-day performance verification. With proper consideration of method-inherent requirements and limitations, many of these procedures and standards can be adapted to other fluorescence techniques. In addition, procedures for the determination of other relevant fluorometric quantities including fluorescence quantum yields and fluorescence lifetimes are briefly introduced. The guide is a clear and concise reference geared for users of fluorescence instrumentation at all levels of experience and is intended to aid in the ongoing standardization of fluorescence measurements. KW - Fluorescence KW - Method KW - Quantum yield KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy KW - Recommendation KW - Instrument qualification PY - 2010 DO - https://doi.org/10.1021/ac902507p SN - 0003-2700 SN - 1520-6882 VL - 82 IS - 5 SP - 2129 EP - 2133 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Descalzo López, Ana Belén A1 - Zhu, Shengchao A1 - Fischer, Tobias A1 - Rurack, Knut ED - Demchenko, A.P. T1 - Optimization of the coupling of target recognition and signal generation T2 - Advanced fluorescence reporters in chemistry and biology II: Molecular constructions, polymers and nanoparticles N2 - Fluorescent reporters that literally "light up" upon binding of a target species are particularly interesting from an analytical point of view. This contribution introduces the main signaling concepts in fluorescent probe research, discusses strategies toward their optimization in terms of signal output, and highlights the wealth of alternative protocols that has been realized in the past two decades to create signaling systems with luminescence amplification features. KW - Dyes KW - Fluorescence KW - FRET KW - Molecular Recognition KW - Nanoparticles PY - 2010 SN - 978-3-642-04699-5 DO - https://doi.org/10.1007/978-3-642-04701-5_2 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 9 IS - 1 SP - 41 EP - 106 PB - Springer AN - OPUS4-21941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, X.-X. A1 - Würth, Christian A1 - Zhao, L. A1 - Resch-Genger, Ute A1 - Ernsting, N.P. T1 - Femtosecond broadband fluorescence upconversion spectroscopy: improved setup and photometric correction JF - Review of scientific instruments N2 - A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425–750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported. KW - Calibration KW - Fluorescence spectroscopy KW - Fluorescence KW - Upconversion KW - Standard KW - Spectral responsivity KW - Time-resolved fluorescence KW - Quality assurance KW - Coumarin 153 KW - Solvation dynamics PY - 2011 DO - https://doi.org/10.1063/1.3597674 SN - 0034-6748 SN - 1089-7623 VL - 82 SP - 063108-1 EP - 063108-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günther, Alexander A1 - Gründer, Klaus-Peter T1 - New bispectral measurement device for fluorescent materials T2 - CIE 27th Session (Proceedings) N2 - The application of fluorescent materials improves the visibility for of warning symbols. BAM has used a measurement device to characterize fluorescent materials, which is based on the two-monochromator method. The result of this measurement method is an illuminant independent characteristic of the fluorescent material, called the Donaldson matrix, In view of its age and speed, the measurement device had to be re-designed and re-built. The new measurement facility is explained in greater detail in the paper. First measurement results and a comparison to the older device are also described. T2 - CIE 27th Session CY - Sun City, South Africa DA - 10.07.2011 KW - Fluorescence KW - Fluorescent materials KW - Donaldson factor KW - Total radiance factor KW - Bi-spectral KW - Two-monochromator method PY - 2011 SN - 978-3-901906-99-2 VL - 1 IS - Part 2 SP - 974 EP - 978 AN - OPUS4-24095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, Andreas A1 - Hoffmann, Angelika A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Quantification of surface functional groups on polymer microspheres by supramolecular host-guest interactions JF - Chemical communications N2 - We introduce a method to determine the number of accessible functional groups on a polymer microsphere surface based on the interaction between the macrocyclic host cucurbit[7]uril (CB7) and a guest reacted to the microsphere surface. After centrifugation, CB7 in the supernatant is quantified by addition of a fluorescent dye. The difference between added and detected CB7 affords the number of accessible surface functional groups. KW - Cucurbituril KW - Acridine orange KW - Fluorescence KW - Polymer surface KW - Surface modification KW - Quantification PY - 2011 DO - https://doi.org/10.1039/c1cc11692d SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 47 IS - 27 SP - 7842 EP - 7844 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-24034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields JF - Analytical chemistry N2 - The photoluminescence quantum yield (Φf) that presents a direct measure for the efficiency of the conversion of absorbed photons into emitted photons is one of the spectroscopic key parameters of functional fluorophores. It determines the suitability of such materials for applications in, for example, (bio)analysis, biosensing, and fluorescence imaging as well as as active components in optical devices. The reborn interest in accurate Φf measurements in conjunction with the controversial reliability of reported Φf values of many common organic dyes encouraged us to compare two relative and one absolute fluorometric method for the determination of the fluorescence quantum yields of quinine sulfate dihydrate, coumarin 153, fluorescein, rhodamine 6G, and rhodamine 101. The relative methods include the use of a chain of Φf transfer standards consisting of several 'standard dye' versus 'reference dye' pairs linked to a golden Φf standard that covers the ultraviolet and visible spectral region, and the use of different excitation wavelengths for standard and sample, respectively. Based upon these measurements and the calibration of the instruments employed, complete uncertainty budgets for the resulting Φf values are derived for each method, thereby providing evaluated standard operation procedures for Φf measurements and, simultaneously, a set of assessed Φf standards. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere PY - 2011 DO - https://doi.org/10.1021/ac2000303 SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 9 SP - 3431 EP - 3439 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes JF - Proceedings of SPIE - Progress in biomedical optics and imaging N2 - Increasing the information content from bioassays which requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement is an important field of research, especially in the context of meeting current security and health concerns. An attractive alternative to spectral multiplexing, which relies on fluorescent labels excitable at the same wavelength, yet sufficiently differing in their emission spectra or color presents lifetime multiplexing. For this purpose, we recently introduced a new strategy based on 'pattern-matching' in the lifetime domain, which was exemplary exploited for the discrimination between organic dyes and quantum dot labels revealing multi-exponential decay kinetics and allowed quantification of these labels. Meanwhile, we have succeeded in extending this lifetime multiplexing approach to nanometer-sized particle labels and probes absorbing and emitting in the visible (vis) and near-infrared (NIR) spectral region. Here, we present a first proof-of-principle of this approach for a pair of NIR-fluorescent particles. Each particle is loaded with a single organic dye chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics. Examples for the lifetime-based distinction between pairs of these fluorescent nanoparticles in solution and in cells are presented. The results underline the potential of fluorescenc lifetime multiplexing in life science and bioanalysis. KW - Fluorescence KW - Fluorescence lifetime imaging microscopy KW - FLIM KW - Lifetime Multiplexing KW - Particle Label KW - Near-infrared KW - NIR KW - Cell imaging KW - Nanoparticles PY - 2011 DO - https://doi.org/10.1117/12.881442 SN - 1605-7422 VL - 7905 SP - 79051F-1 EP - 79051F-9 PB - SPIE, The International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-23637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Mix, Renate A1 - Friedrich, Jörg Florian A1 - Buschmann, H.-J. A1 - Resch-Genger, Ute T1 - Anchoring of Fluorophores to plasma-chemically modified polymer surfaces and the effect of Cucurbit[6]uril on dye emission JF - Journal of fluorescence N2 - Polypropylene supports were functionalized by plasma-deposition of polymeric allylamine layers. The surface amino groups generated were wet-chemically reacted with xanthene dyes resulting in fluorescent polymer films. The effect of polymer-attachment of the dyes on their emission features was studied fluorometrically and different methods were tested to improve the fluorescence properties of the films. Modification with cucurbit[6]uril (CB6) yields a moderately enhanced fluorescence as well as an improved photostability. The observed effect is most likely due to CB6-induced rigidization of the linker molecules which seems to reduce fluorescence quenching dye–dye and fluorophore–surface interactions. KW - Fluorescence KW - Cucurbituril KW - Surface modification KW - Plasma functionalization KW - Polymer surface KW - Xanthene dyes PY - 2009 DO - https://doi.org/10.1007/s10895-008-0407-1 SN - 1053-0509 SN - 1573-4994 VL - 19 SP - 229 EP - 237 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-19154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Kapusta, P. A1 - Nann, T. A1 - Shu, X. A1 - Ziegler, J. A1 - Resch-Genger, Ute T1 - Fluorescence lifetime multiplexing with nanocrystals and organic labels JF - Analytical chemistry N2 - The potential of semiconducting nanocrystals or so-called quantum dots (QDs) for lifetime multiplexing has not been investigated yet, despite the increasing use of QDs in (bio)analytical detection, biosensing, and fluorescence imaging and the obvious need for simple and cost-effective tools and strategies for the simultaneous detection of multiple analytes or events. This is most likely related to their multiexponential decay behavior as for multiplex chromophores, typically monoexponential decay kinetics are requested. The fluorescence decay kinetics of various mixtures of a long-lived, multiexponentially decaying CdSe QD and a short-lived organic dye were analyzed, and a model was developed for the quantification of these labels from the measured complex decay kinetics as a first proof-of-concept for the huge potential of these labels for lifetime multiplexing. In a second step, we evaluated the potential of mixtures of two types of QDs, varying in constituent material to realize distinguishable, yet multiexponential decay kinetics and similar absorption and emission spectra. Strategies for lifetime multiplexing with nanocrystalline labels were derived on the basis of these measurements. KW - Multiplexing KW - Lifetime KW - Fluorescence KW - Photoluminescence KW - TCSPC KW - Quantum dot KW - Nanocrystal KW - CdSe KW - InP KW - Organic dye KW - DCM PY - 2009 DO - https://doi.org/10.1021/ac900934a SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 18 SP - 7807 EP - 7813 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Marcos, D. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Soto, J. A1 - Rurack, Knut A1 - Amorós, P. T1 - The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification JF - Angewandte Chemie / International Edition KW - Chemosensors KW - Fluorescence KW - Mesoporous materials KW - Methylmercury KW - Methylquecksilber KW - Sensoren KW - Mesoporöse Materialien KW - Fluoreszenz KW - Hybridmaterialien PY - 2009 DO - https://doi.org/10.1002/anie.200904243 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 48 IS - 45 SP - 8519 EP - 8522 PB - Wiley-VCH CY - Weinheim AN - OPUS4-20308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Spieles, Monika A1 - Kaiser, W.A. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging JF - Journal of fluorescence N2 - Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Φf) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Φf values of the bioconjugated dye. KW - Fluorescence KW - Cyanine dye KW - Cytotoxicity KW - Stability KW - In vivo fluorescence imaging KW - Quantum yield KW - Contrast agent KW - Optical probe PY - 2010 DO - https://doi.org/10.1007/s10895-010-0603-7 SN - 1053-0509 SN - 1573-4994 VL - 20 IS - 3 SP - 681 EP - 693 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-21401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X.-D. A1 - Meier, R.J. A1 - Schmittlein, C. A1 - Schreml, S. A1 - Schäferling, Michael A1 - Wolfbeis, Otto S. T1 - A water-sprayable, thermogelating and biocompatible polymer host for use in fluorescent chemical sensing and imaging of oxygen, pH values and temperature JF - Sensors and actuators B: Chemical N2 - We report on the use of a sprayable and thermogelating biomaterial (Poloxamer™; a.k.a. Pluronic™) in optical imaging of pH values, local oxygen and temperature. The material is highly biocompatible and easy to handle. We also show that the material is well permeable to oxygen (thus making it a good choice for use in oxygen sensors), and is stable in liquid solution and at elevated temperature. We demonstrate its applicability in optical sensors for oxygen, pH and temperature. This was accomplished by incorporating appropriate luminescent probes in various kinds of microparticles (which act as hosts for the probes and prevent dye leaching and aggregation), and then dispersing the microparticles in the thermogelating polymer. The resulting sensor gels were deposited on the surface of interest via spraying at temperatures of <20 °C. At these temperatures, the gels adhere well to the target, even on uneven surfaces such as skin, wounds, and bacterial cultures. If temperature is risen to above 25 °C, the gels form a thin and soft but solid sensing layer which, however, can be simply removed from surface of interest by cooling and wiping it off, or by washing with water. Sprayable thermogelating sensors present obvious advantages over other sensors by not causing damage to the surface of interest. In our perception, the sensing materials also have wide further applicability in sensors for other species including clinically relevant gases, enzyme substrates (such as glucose or lactate) and ions. KW - Chemical sensing KW - Imaging KW - Biocompatible polymer KW - Sprayable sensor KW - Fluorescence KW - Poloxamer KW - Pluronic KW - Oxygen sensor KW - pH sensor KW - Temperature sensor PY - 2015 DO - https://doi.org/10.1016/j.snb.2015.05.082 SN - 0925-4005 SN - 1873-3077 VL - 221 SP - 37 EP - 44 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Kaiser, Martin A1 - Resch-Genger, Ute T1 - Critical review of the determination of photoluminescence quantum yields of luminescent reporters JF - Analytical and bioanalytical chemistry N2 - A crucial variable for methodical performance evaluation and comparison of luminescent reporters is the photoluminescence quantum yield (Φ pl). This quantity, defined as the number of emitted photons per number of absorbed photons, is the direct measure of the efficiency of the conversion of absorbed photons into emitted light for small organic dyes, fluorescent proteins, metal–ligand complexes, metal clusters, polymeric nanoparticles, and semiconductor and up-conversion nanocrystals. Φ pl determines the sensitivity for the detection of a specific analyte from the chromophore perspective, together with its molar-absorption coefficient at the excitation wavelength. In this review we discuss different optical and photothermal methods for measuring Φ pl of transparent and scattering systems for the most common classes of luminescent reporters, and critically evaluate their potential and limitations. In addition, reporter-specific effects and sources of uncertainty are addressed. The ultimate objective is to provide users of fluorescence techniques with validated tools for the determination of Φ pl, including a series of Φ pl standards for the ultraviolet, visible, and near-infrared regions, and to enable better judgment of the reliability of literature data. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Organic dye KW - Nanoparticle KW - Quantum dot KW - Up-conversion nanocrystal KW - Optical probe KW - Standard KW - Quality assurance KW - Integrating sphere spectroscopy KW - Photoacoustic spectroscopy KW - Thermal lensing KW - Nanocavity PY - 2015 DO - https://doi.org/10.1007/s00216-014-8130-z SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 1 SP - 59 EP - 78 PB - Springer CY - Berlin AN - OPUS4-32406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -