TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Rehfeldt, Rainer T1 - Compatibility of polymeric materials with heating oil/biodiesel blends at different temperatures N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with admixtures of 10 % biodiesel (B10) and 20 % biodiesel (B20). The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. The objective of this research was to determine the resistance of frequently used sealing materials such as FKM, EPDM, CR, CSM, NBR, IIR, VMQ, FVMQ, PA and PUR in up to four-year aged B10 for 84 days at 20 °C, 40 °C and 70 °C. The polymeric materials: ACM, FKM, HNBR, PA, PE; POM, PUR and PVC were ex-posed to B20 for 84 days at 40°C and 70°C in another research project. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after the exposure for 84 (42) days in the heating oil blends B10 and B20. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. Measurements of the variations in mass, tensile properties and Shore hardness after exposure of the polymers in non-aged and aged heating oil B10 showed clearly that FKM, FVMQ and PA were the most resistant materials in B10. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to B10. Damage to the materials increased with higher test temperatures and the age of B10. FKM, POM and PVC showed high compatibility in B20 at 40°C and 70 °C. ACM, HNBR and PA were evaluated as resistant in B20 at 40 °C but not at 70°C. T2 - Corrosion 2019 CY - Warsaw, Poland DA - 27.09.2019 KW - Polymers KW - Compatibility evaluations KW - Heating oil with 10% biodiesel KW - Heating oil with 20% biodiesel KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-48146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina T1 - Compatibility of polymeric sealing materials with biodiesel heating oil blends at different temperatures N2 - Biodiesel is subject to degradation processes like oil and grease. The oxidative degradation products of vegetable oil esters in biodiesel particularly lead to enhanced sedimentation in blended fuels. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. It also accelerates the degradation (hydrolysis and oxidation) of these materials with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used polymeric materials such as ACM, EPDM, FKM, FVMQ, CR, CSM, IIR, HNBR, NBR, PA, PE; POM, PUR, PVC and VMQ in biodiesel and heating oil with 10 %/20 % biodiesel (B10/B20) at 40°C and 70°C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the biodiesel heating oil blends. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D were determined before and after exposure of the test specimens in the biofuels for 42 days. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to biodiesel and B10 at 40°C and 70°C. FKM, ACM, HNBR, PA, PE, POM, and PVC showed high compatibility in B10/B20 at 40°C. A lower compatibility was determined for ACM in biodiesel. ACM and HNBR were not resistant in B20 at 70°C. T2 - Biofuels & Bioenergy CY - Rome, Italy DA - 14.10.2019 KW - Heating oil-Biodiesel-Blend KW - Compatibility evaluations KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-49306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Bäßler, Ralph T1 - Compatibility of polymers with heating oil with 20 % biodiesel at different temperatures under static and compressed conditions N2 - Biodiesel is viewed as a major source of energy. In areas such as the European Union, where 80 % of the oil-based fuel is imported, there is also the desire to reduce dependence on external oil supplies. Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with 20 % biodiesel (B20) in comparison to pure heating oil. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties. Extraction alters the fuel chemistry. These chemical changes could also accelerate the degradation (hydrolysis and oxidation) of the polymeric material with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used materials for components in middle distillate facilities such as ACM, FKM, HNBR, PA, PE, POM, PUR and PVC in heating oil and heating oil blend B20 for 84 days at 40 °C, and FKM, HNBR, PA, POM, PUR and PVC at 70 °C. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after exposure for 84 (42) days in the test fuels under static conditions. For the investigations under compressed conditions, the mass and the compression set of FKM test specimens were determined before and after exposure for 3, 7, 14, 28, 56 and 90 days in B20 at 40 °C and 70 °C according to ISO 815-1 “Rubber, vul-canized or thermoplastic - determination of compression set – Part 1: At ambient or elevated temperatures”. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was determined for the evaluation of the compatibility. The change of tensile strength and breaking elongation of test specimens made of ACM, FKM, HNBR, PA, PE, POM, PUR and PVC exposed to heating oil and the blend B20 was less than 15 % at 40 °C. A maximum reduction in Shore hardness A of 14 % was determined for ACM at 40 °C and for HNBR of 15 % at 70 °C. It can be concluded that ACM, FKM, HNBR, PA, PE, POM, PVC and PUR were resistant in B20 at 40°C. FKM, PA, POM and PVC were evaluated as resistant in heat-ing oil and B20 at 70 °C, HNBR and PUR were not resistant in these fuels at 70°C. Based on the mass increase and compression set values of FKM test specimens it can be stated that FKM is resistant in B20 under compressed conditions at 40 °C and 70 °C. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil - biodiesel - blend KW - Polymeric materials KW - Compatibility KW - Tensile properties KW - Shore Hardness PY - 2019 AN - OPUS4-49002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine learning‑based data fusion approach for improved corrosion testing JF - Surveys in Geophysics N2 - This work presents machine learning-inspired data fusion approaches to improve the non-destructive testing of reinforced concrete. The principal effects that are used for data fusion are shown theoretically. Their effectiveness is tested in case studies carried out on largescale concrete specimens with built-in chloride-induced rebar corrosion. The dataset consists of half-cell potential mapping, Wenner resistivity, microwave moisture and ground penetrating radar measurements. Data fusion is based on the logistic Regression algorithm. It learns an optimal linear decision boundary from multivariate labeled training data, to separate intact and defect areas. The training data are generated in an experiment that simulates the entire life cycle of chloride-exposed concrete building parts. The unique possibility to monitor the deterioration, and targeted corrosion initiation, allows data labeling. The results exhibit an improved sensitivity of the data fusion with logistic regression compared to the best individual method half-cell potential. KW - Corrosion KW - Potential mapping KW - Machine learning PY - 2019 DO - https://doi.org/10.1007/s10712-019-09558-4 SN - 1573-0956 SN - 0169-3298 VL - 41 IS - 3 SP - 531 EP - 548 PB - Springer Nature AN - OPUS4-48799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Pichelhöfer, A. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Galvanic chloride extraction by an embedded zinc anode: Ion distribution mapped by laser induced breakdown spectroscopy (LIBS) T2 - Concrete Solutions 2019 N2 - An important aspect with regard to the service life of zinc based galvanic anodes and the durability of the corrosion protection of steel in concrete is the “galvanic chloride extraction”. Chloride ions move in the electric field generated by the current, flowing between the galvanic anode and the cathodic steel. Migration leads to an accumulation of anions, e.g. chloride ions, at the anode and depletion of chlorides near the steel rebar surface. The ion migration was studied on steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied embedded zinc anode (EZA). The zinc anode was embedded and glued to the concrete surface by a geo-polymer based chloride free binder. The EZA was operated over a period of 1 year and the ion distribution between anode (EZA) and cathode (steel reinforcement) was studied by laser induced breakdown spectroscopy (LIBS) after 5 months, 7 months and 12 months. The results show that chloride ions efficiently migrate in the direction of the zinc-anode and accumulate there. Chloride distribution in the EZA correlates with the distribution of zinc ions generated by the anodic dissolution of the zinc anode in the binder matrix. The microstructure of the binder matrix and its interface to the zinc-anode are studied by REM/EDX – preliminary results will be reported. T2 - Concrete Solutions 2019 CY - Cluj Napoca, Romania DA - 30.09.2019 KW - Galvanic corrosion KW - Corrosion KW - Chloride extraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488189 DO - https://doi.org/10.1051/matecconf/201928903010 VL - 289 SP - 03010, 1 EP - 5 PB - MATEC Web of Conferences AN - OPUS4-48818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütter, H. A1 - Le, Quynh Hoa A1 - Knauer, S. A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Combining CO2 streams from different emitters ‐ a challenge for pipeline transportation N2 - Depending on the CO2 generating and the capture process as well as on consecutive purification steps applied, CO2 streams from different emitters may differ in their composition. When CO2 streams with different compositions are fed into a larger pipeline network, there are several aspects that must be considered: i) chemical reactions, such as acid formation, may occur within the joint CO2 stream; ii) there may be a variation of mass flow rate and CO2 stream composition within the pipeline network if the feed-in behavior of different CO2 sources changes with time. Potential impacts of changing CO2 stream compositions and mass flow rates in CCS cluster systems were investigated in the collaborative project "CLUSTER" (see also www.bgr.bund.de/CLUSTER). In this presentation, we focus on the experimental investigations of formation and condensation of strong acids and their impacts on the corrosion of pipeline steels. When SO2, NO2, O2 and H2O are present simultaneously in CO2 streams chemical cross-reactions may occur leading to the formation of strong acids such as sulfuric and nitric acid. To prevent this acid formation the concentration of at least one of these four impurities must be kept very low (e.g., Rütters et al., 2016). At temperatures below the acid dew point temperature, acids will condense, e.g., on pipeline steel surfaces. In turn, these acid condensates may trigger steel corrosion. To better understand the process of acid formation and condensation and its implications for steel corrosion, exposure tests were performed on pipeline steel X70 in dense CO2 with varying SO2, NO2 and O2 concentration under high pressure and at 278 K in an observable autoclave, in which water was added as droplets or as vapor. Further, electrochemical tests were carried out with X70 specimens immersed in 500 mL CO2-saturated synthetic condensate solution or in droplets of the same solution on the specimen’s surface. Depending on impurity concentrations in the CO2 streams, condensates consisting of different relative amounts of nitric and sulfuric acid were formed. In condensates containing both nitric and sulfuric acid, corrosion rates were higher than the sum of those of the individual acids. In addition, corrosion products and forms depended on the condensate composition. Investigations of water droplets on steel surfaces in impurity-containing dense-phase CO2 revealed the diffusion of SO2 and NO2, followed by cross-reactions forming corresponding acids. An increase in droplet size (from 1 to 5 µl) lead to higher corrosion rates. However, in comparison to measurements in bulk solution, corrosion reactions in droplets resulted in thick, high-resistance corrosion products and observed droplet corrosion rates were significantly lower. In addition, the possibility of acid droplet formation and growth in impure liquid CO2 is influenced by the wetting behavior of the acid droplet on the steel surface. Thus, the contact angle between a water droplet and the surface steel specimens in a CO2 atmosphere was investigated in a high pressure view cell following the sessile drop method. The contact angle wasand found to be larger at higher CO2 pressures (studied from 5 to 20 MPa) and at higher temperatures (e.g. 278 K to 333 K). Further, measured contact angles were larger on rough than on smooth metal surfaces. In addition, acid formation reduced the contact angle, i.e. lead to better wetting, thereby stimulating condensation that was followed by a corrosion process. These detailed insights on the complex interplay of acid formation, condensation, wetting behavior and corrosion allow a better assessment of material suitability for pipeline transportation of impure CO2 streams T2 - TCCS-10 The 10th Trondheim Conference on Carbon Capture, Transport and Storage CY - Trondheim, Norway DA - 17.06.2019 KW - arbon capture KW - utilization, and storage (CCUS) technology KW - corrosion KW - condensate KW - electrochemical characterization KW - pitting corrosion KW - impurities KW - carbon steel PY - 2019 UR - https://www.sintef.no/globalassets/project/tccs-10/dokumenter/tccs10---book-of-abstracts.pdf AN - OPUS4-48369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinemann, Steffi A1 - Rosemann, P. A1 - Babutzka, Martin A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Influence of grinding parameters on the corrosion behavior of austenitic stainless steel JF - Materials and Corrosion N2 - Samples of the austenitic stainless steel grade X5CrNi18‐10 (1.4301, AISI 304) were ground industrially with various grinding parameters to study their influence on corrosion resistance. The ability of the mechanically ground surfaces to form a stable passive layer was evaluated by KorroPad test and a modified electrochemical potentiodynamic reactivation test based on a single loop (EPR‐SL). Furthermore, the surfaces were characterized by surface analytical methods. The main influence was determined regarding abrasive belt type. Surfaces mechanically ground with granulate abrasive belts constantly had a lower corrosion resistance than surfaces ground with single‐coated grain. The granulate abrasive belts generated more sensitized surface areas and left formations of welded sample material on the mechanically ground surfaces. A post‐treatment with a nonwoven abrasive proved to be an effective finishing process by which the surface defects and sensitized material got removed and the surfaces regained the expected corrosion resistance. KW - Abrasive belt KW - Austenitic stainless steel KW - Electrochemical potentiodynamic reactivation KW - Grinding KW - KorroPad KW - Surface KW - Corrosion PY - 2019 DO - https://doi.org/10.1002/maco.201910874 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 10 SP - 1776 EP - 1787 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-47871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pötzsch, Sina A1 - Bäßler, Ralph A1 - Weltschev, Margit T1 - Resistance of metals exposed to heating oil blends with 10 % and 20 % biodiesel (FAME) N2 - In Europe biodiesel gained from rapeseeds are considered as an alternative to common fossil fuels due to its environmental performance and its independence from import of raw materials. Biodiesel is also suitable to serve as blending component to heating oil. In that case, it must be considered that changes of fuel composition might cause material degradation. The objective of this research was to investigate the resistance of metallic materials exposed to heating oil, heating oil blend B20 with 20 % biodiesel and pure biodiesel. Furthermore, the resistance of metals to eight-year aged B10 and six-year aged pure biodiesel was evaluated. Ageing of biodiesel forms acids and water which might propagate metal corrosion. The investigated metals (aluminium, unalloyed steel, austenitic CrNi-steel, copper, die cast zinc and brass) are commonly used for components in middle distillate facilities. According to DIN 50905-4 the immersed metals were exposed in a climate chamber at 50°C for 4 weeks. The metallic materials were evaluated as resistant if the annual corrosion rate due to uniform corrosion remained under 0.1 mm/year and no localized corrosion in the form of pitting occurred. The corrosion rates of the exposed materials stayed far below the limit of 0.1 mm/year for all tested fuels. An exception was die cast zinc ZP0410 in eight-year aged B10; a corrosion rate up to 0.3 mm/year due to uniform corrosion was measured. In no case localized corrosion occurred. Copper and brass caused discolouration of biodiesel from yellow to green. In conclusion, the tested metallic materials were resistant in heating oil, heating oil blend B20 and pure biodiesel at 50 °C. Even the metals exposed to six-year aged biodiesel and eight-year aged B10 showed no uniform or localized corrosion; except for zinc, which was not resistant in eight-year aged B10. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Metals KW - Heating oil KW - Biodiesel KW - RME KW - Corrosion KW - Compatibility KW - FAME PY - 2019 AN - OPUS4-49137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pötzsch, Sina T1 - Practical Testing and Evaluation of Plastics (Book review) T2 - Practical Testing and Evaluation of Plastics N2 - One can conclude, this first edition of “Practical Testing and Evaluation of Plastics” provides a comprehensive and compact reference. It can be recommended as clear overview as well as introducing manual for everyone working with characterization and testing of plastics. KW - Plastic KW - Testing PY - 2019 DO - https://doi.org/10.1002maco.201970054 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 05 SP - 931 EP - 932 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ogle, K. A1 - Erning, Johann Wilhelm A1 - Zhou, P. T1 - Interactions between elemental components during the dealloying of Cu-Zn alloys JF - Electrochimica acta N2 - The elemental dissolution of Cu-Zn alloys was investigated as a function of Zn content ranging from 0 to 45 wt%. Atomic emission spectroelectrochemistry (AESEC) was utilized to directly monitor Cu2+ and Zn2+ release and oxide growth as function of time during potentiodynamic experiments. It was determined that Cu dissolution undergoes a simultaneous mechanism of Cu2O formation and Cu2+ release. The addition of Zn in Cu-Zn alloy does not measurably change the dissolution mechanism of Cu2+ and the rate of aqueous Cu2+ was only dependent on the potential. Zn dissolution was however blocked by the formation of a Cu(0) film which shifted the Zn dissolution in the anodic direction. KW - Copper KW - Brass KW - Dealloying KW - Drinking water PY - 2019 DO - https://doi.org/10.1016/j.electacta.2018.09.181 SN - 0013-4686 VL - 293 IS - Januar SP - 290 EP - 298 PB - Elsevier AN - OPUS4-46269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munasir, A1 - Triwikantoro, A1 - Zainuri, M. A1 - Bäßler, Ralph A1 - Darminto, T1 - Mechanical Strength and Corrosion Rate of Aluminium Composites (Al/SiO2): Nanoparticle Silica (NPS) as Reinforcement JF - Journal of Physical Science N2 - The fabrication and characteristics of amorphous silica reinforced Al matrix composites are studied in this paper. The major starting materials were commercial Al powder and extracted nanoparticle SiO2 (NPS) powder from Indonesian silica sands. Two different active solutions,namely N-butanol and tetramethylammonium hydroxide (TMAH), were introduced during synthesis. Characterisations in terms of physical, mechanical, microstructural and corrosion rate examinations were also employed. Introducing the SiO2 nanoparticles into the Al matrix has decreased the density and increased the porosity of the composites. The addition of N-butanol into Al/SiO2(Al/SiO2(B)) led to broader and lower X-ray diffraction profiles than the addition of TMAH (Al/SiO2(T)). From the microstructural analysis, we found that the SiO2 particles enter and agglomerate into the opening gap of the Al sheets. Furthermore, yield strength, ultimate compression strength and modulus of elasticity tended to reduce the addition of SiO2. The corrosion rate of Al/SiO2(T) was lower than that of Al/SiO2(B) composites. KW - Aluminium KW - Silica KW - Al/SiO2 composite KW - Mechanical strength KW - Corrosion rate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487185 DO - https://doi.org/10.21315/jps2019.30.1.7 SN - 1675-3402 SN - 2180-4230 VL - 30 IS - 1 SP - 81 EP - 97 PB - USM Press CY - Pulau Pinang, Malaysia AN - OPUS4-48718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munasir, A1 - Triwikantoro, A1 - Zainuri, M. A1 - Bäßler, Ralph A1 - Darminto, T1 - Corrosion Polarization Behavior of Al-SiO2 Composites in 1M NaCl and Related Microstructural Analysis JF - International Journal of Engineering N2 - The composites combining aluminum and silica nanoparticles with the addition of tetramethylammonium hydroxide (Al-SiO2(T)) and butanol (Al-SiO2(B)) as mixing media have been successfully fabricated. Corrosion behavior of Al-SiO2 composites before and after exposure in 1M NaCl solution was examined using potentiodynamic polarization (Tafel curve analysis). The study was also equipped with scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) investigations. Before exposure, Al-SiO2(T) exhibited the best corrosion resistance. Performance improvement was indicated by Al-SiO2(B) up to 10 times better than Al-SiO2(T) after exposure. The increased SiO2 content did not significantly enhance the corrosion resistance of the composites. The Al-SiO2 composites with 5% SiO2 content showed very high corrosion resistance (as the optimum composition). Furthermore, pitting corrosion was observed in the Al-SiO2 composites, indicated by the formation of corrosion products at grain boundaries. The product was affected by the presence of SiO2 in the Al matrix and the NaCl environment at 90 °C (approach to synthetic geothermal media: Na+, Cl, H+, OH-). Our study revealed the presence of γ-Al2O3, γ-Al(OH)3, and Al(OH)2Cl as the dominant corrosion products. KW - Al-Composite KW - Corrosion KW - Corrosion rate KW - SiO2 Nanoparticle KW - Tafel Plot PY - 2019 DO - https://doi.org/10.5829/ije.2019.32.07a.11 SN - 1025-2495 SN - 1735-9244 VL - 7 IS - 32 SP - 982 EP - 990 PB - Materials and Energy Research Center AN - OPUS4-48742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N. A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of co 2 injection pipe steels: role of cement T2 - Electronic Proceedings Eurocorr 2019 N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Cement KW - Carbon capture KW - Corrosion and storage (CCUS) technology KW - Utilization KW - Carbon steel KW - Crevice corrosion PY - 2019 SP - Paper 200597, 1 EP - 4 PB - SOCIEMAT CY - Madrid, Spain AN - OPUS4-49109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Knauer, S. T1 - Factors Influencing Droplet Corrosion in Dense Phase CO2 T2 - Proceedings NACE International Corrosion Conference 2019 N2 - Recent studies have shown that even at a very low concentration of impurities (less than 100 ppmv of SO2, NO2, O2 and H2O) the droplet formation and condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. To reveal the mechanism of droplet corrosion in dense phase CO2 at high pressure and low temperature, further studies on factors that affect wettability and resulting corrosion behaviors of transport pipeline steels are needed. In this study, effects of surface morphology were investigated by varying surface roughness of carbon steel coupons exposed to CO2 stream containing impurities to measure the wettability by contact angle and to observe the condensation as well as possible droplet corrosion that followed. Other considered factors were: pH of the droplet, temperature, droplet volume, and exposure time. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - CCUS KW - Dense phase KW - CO2 KW - Droplet KW - Corrosion KW - Condensation KW - Carbon steel PY - 2019 SP - 13017-1 EP - 13017-13 PB - NACE International CY - Houston AN - OPUS4-47915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2 JF - Materials N2 - To study the effects of condensed acid liquid, hereafter referred to as condensate, on the CO2 transport pipeline steels, gas mixtures containing a varying concentration of H2O, O2, NO2, and SO2, were proposed and resulted in the condensate containing H2SO4 and HNO3 with the pH ranging from 0.5 to 2.5. By exposing the pipeline steel to the synthetic condensate with different concentration of acidic components, the corrosion kinetic is significantly changed. Reaction kinetic was studied using electrochemical methods coupled with water analysis and compared with surface analysis (scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometry (XRD)) of corroded coupons. The results showed that, although the condensation of NO2 in the form of HNO3 causes faster general corrosion rate, it is the condensation of SO2 in the form of H2SO4 or the combination of SO2 and NO2 that may cause much more severe problems in the form of localized and pitting corrosions. The resulting corrosion forms were depended on the chemical nature of acids and their concentration at the same investigated pH. The effects of changing CO2 flow rate and renewing condensate on pitting corrosion were further studied. KW - Carbon capture, utilization and storage technology KW - CCUS KW - Corrosion KW - Condensate KW - Electrochemical characterisation KW - Pitting corrosion KW - Impurities KW - Carbon steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473685 UR - https://www.mdpi.com/1996-1944/12/3/364 DO - https://doi.org/10.3390/ma12030364 SN - 1996-1944 VL - 12 IS - 3 SP - 364, 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of CO2 injection pipe steels: Role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Corrosion KW - Carbon steel KW - Mortel KW - Crevice corrosion PY - 2019 AN - OPUS4-49105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langklotz, U. A1 - Babutzka, Martin A1 - Schneider, M. A1 - Burkert, Andreas T1 - The combination of minimally invasive electrochemical investigations and FTIR‐spectroscopy to analyze atmospheric corrosion product layers on zinc JF - Materials and Corrosion N2 - The present work describes the combination of electrochemical investigations by using a gel‐type electrolyte with Fourier‐transformed infrared spectroscopy to investigate partially extremely thin corrosion product films on titanium‐zinc. The gel pad method enables the determination of corrosion relevant parameters such as the potential and the linear polarization resistance without altering the corrosion product layers, which are extremely prone to re‐dissolution when freshly formed. Complementary infrared spectroscopy enables the determination of main compounds of even very thin surface layers of few tenth of nanometers with a certain lateral resolution. It was found that zinc forms mostly zinc carboxy‐hydroxides such as hydrozincite, under various exposure conditions. The protective properties of these hydrozincite layers depend on the structure of the corrosion product film rather than on its thickness. In mid‐term exposure tests, shallow corrosion pits were found even in the absence of corrosive agents such as chloride. KW - Gel-type electrolytes KW - Gelartige Elektolyte KW - Zinc coatings KW - Zinkdeckschichten KW - Korrosionsprüfung KW - Corrosion testing KW - FT-IR PY - 2019 DO - https://doi.org/10.1002/maco.201810696 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 7 SP - 1314 EP - 1325 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-47728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Langklotz, U. A1 - Babutzka, Martin A1 - Burkert, Andreas A1 - Schneider, M. T1 - FT-IR spectroscopy of corrosion products formed on zinc under atmospheric conditions N2 - Zinc materials are of high importance in the field of corrosion protection. For example, almost half of the annual production of zinc is used as anti-corrosive layer for steel components, particularly under atmospheric conditions. The corrosion protection is frequently ascribed to zinc carbonate species with low solubility which form on the metal surface under atmospheric conditions. Due to the technological importance and wide use of zinc materials, its corrosion behavior and the formation of reaction products has been intensively investigated over decades. Assuming atmospheric corrosion conditions, an initial native passive film of few nanometers thickness forms spontaneously. It consists of zinc oxide and hydroxide, transforming into various species in dependence of the surrounding atmospheric conditions. This study focusses on the investigation of corrosion product layers on massive titanium-zinc sheets, formed during short- and mid-term exposure experiments by Fourier-transformed infrared spectroscopy. This method enables the investigation of extremely thin native passive films which form during the initial hours of exposure. Furthermore, aged surface layers are analyzed which were formed by transformation of initial passive layers over the time of several weeks. The spectroscopic investigations are complemented by scanning electron microscopy (SEM/EDX) in order to obtain information on the chemical composition and morphology of the corrosion products. The combination of both methods offers a comprehensive view on the processes occurring in the early stages of zinc corrosion. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Zinc coatings KW - FT-IR KW - Layer formation PY - 2019 AN - OPUS4-49132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Components in CO2 Streams with Transport Pipeline Steel X70 at High Pressure and Low Temperature T2 - 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14) N2 - Specific amounts of oxidizing and reductive impurities as well as some moisture were added to dense phase CO2 to replicate CO2 streams from sources in a CCS pipeline network. Due to the moisture content being only 50 ppmV no visible acid condensation took place. To simulate stress conditions at the inside pipeline surface due to fluid pressure (10 MPa) specimens were preloaded using a load frame. Experiments conducted at 278 K and at 313 K revealed the highest corrosion rate at lower temperature. Corrosive effect of impurities was strongest applying mixed atmosphere, containing oxidizing and reductive components, closely followed by CO2 streams with pure oxidizing character. By far, the lowest corrosion rate (10x lower) resulted from reductive atmosphere. In general, at constant temperature and pressure the CO2 stream composition strongly influences the morphology, thickness and composition of the corrosion products. Applying oxidizing or mixed impurities, iron hydroxides or oxides (e.g. goethite, hematite) occur as dominating corrosion products, capable to incorporate different amounts of sulfur. In contrast, using reductive atmosphere very thin corrosion layers with low crystallinity were developed, and phase identification by XRD was unfeasible. SEM/EDX analysis revealed the formation of Fe-O compounds, most likely attributed to the oxygen partial pressure in the system induced by CO2 (≥0.985 volume fraction) and volatile H2O. In addition to the surface covering corrosion layer, secondary phases had grown locally distributed on top of the layer. These compounds are characteristic for the applied atmosphere and vary in number, shape and chemical composition. T2 - 14th Greenhouse Gas Control Technologies Conference (GHGT-14) CY - Melbourne, Australia DA - 21.10.2018 KW - CCS KW - CO2 Corrosion KW - Pipelines PY - 2019 UR - https://ssrn.com/abstract=3365756 VL - 2019 SP - 1 EP - 15 AN - OPUS4-49711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knauer, S A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Jaeger, P T1 - Contact angle and corrosion of a Water – CO2 system on X70 and S41500 at 278 K and pressures up to 20 MPa JF - International Journal of Greenhouse Gas Control N2 - Interfacial properties related to wettability and corrosion in CO2 transport pipelines are experimentally determined by the sessile and the pendant drop methods. The contact angle of a water drop in a compressed CO2 atmosphere is analyzed on an X70 pipeline carbon steel and compared to that on a martensitic steel S41500 to elucidate the effect of corrosion process on active wetting behaviour. The measurements are performed with liquid CO2 at 278 K and pressures ranging from 5 to 20 MPa. The results show that the contact angle (CA) increases with pressure from 132 ° to 143 ° for S41500 and from 117 ° to 137 ° for X70 and decreases with drop age by 20 ° to 24 ° regardless of the pressure and of the fact that corrosion only occurs on X70, which is confirmed by scanning electron microscopy, element mapping and energy dispersive x-ray spectrometry (EDS) analysis. At higher pressure, the contact angles on both materials converge. Further, related properties like density and interfacial tension were determined. CO2 - saturated water has a higher density than pure water: At 5 MPa saturated water reaches a density of 1017 kg⋅m^(-3) and at 20 MPa 1026 kg⋅m^(-3) compared to pure water with a density of 1002 kg⋅m^(-3) and 1009 kg⋅m^(-3), respectively. In this pressure range the IFT drops from 33 mN⋅m^(-1)at 5 MPa to 23 mN⋅m^(-1) at 20 MPa. KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Contact angle KW - Wetting KW - Corrosion KW - Condensate KW - Impurities KW - Carbon steel PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S1750583618309472?dgcid=author DO - https://doi.org/10.1016/j.ijggc.2019.06.021 SN - 1750-5836 SN - 1878-0148 VL - 89 SP - 33 EP - 39 PB - Elsevier, ScienceDirect AN - OPUS4-48601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, Norman A1 - Heyn, A. A1 - Halle, T. A1 - Rosemann, Paul T1 - Detection of sensitisation on aged lean duplex stainless steel with different electrochemical methods JF - Electrochimica Acta N2 - Ageing at 600 °C (from 0.1 h up to 20 h) leads to the formation of precipitations at the ferrite-ferrite (α/α) and ferrite-austenite (α/γ) grain boundaries of the lean duplex stainless steel (LDSS) X2CrNiN22-2. This leads to sensitisation due to chromium depletion and decreased pitting corrosion resistance proven by the results of various electrochemical methods (DL-EPR and determination of CPT, Epit). These results were compared with the KorroPad method, which uses an agar-based gel-electrolyte for the detection of stainless steel surfaces prone to pitting corrosion. However, the standard configuration of the KorroPad showed no differentiation for the various ageing conditions. Therefore, modified versions of the KorroPad with two, five and ten times higher NaCl and potassium ferrocyanide III (K3[Fe(CN)6]) concentrations were successfully used to visualise the behaviour detected by DL-EPR, Epit and CPT. Therefore, the KorroPad method can also detect a microstructure related reduction of pitting corrosion resistance, which can drastically reduce the experimental effort to generate sensitisation diagrams for stainless steels. KW - Lean duplex KW - Stainless steel KW - Sensitisation KW - Polarisation KW - Critical pitting temperature KW - Pitting corrosion KW - KorroPad KW - Ageing treatment PY - 2019 DO - https://doi.org/10.1016/j.electacta.2019.05.081 SN - 0013-4686 SN - 1873-3859 VL - 317 SP - 17 EP - 24 PB - Elsevier AN - OPUS4-48374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kamaraj, Abinaya A1 - Erning, Johann Wilhelm A1 - Reimann, S. A1 - Ahrens, A. T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids T2 - Proceedings NACE International Corrosion Conference 2019 N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - Steel KW - Crevice KW - Corrosion KW - ECA KW - Stainless PY - 2019 SP - Paper 12868 PB - NACE International CY - Houston AN - OPUS4-49286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kamaraj, Abinaya A1 - Erning, Johann Wilhelm A1 - Reimann, S. A1 - Ahrens, A. T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Corrosion 2019 NACE CY - Nashville, TN, USA DA - 24.03.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Reinemann, Steffi A1 - Gluth, Gregor A1 - Ebell, Gino A1 - Mietz, Jürgen ED - Serdar, M. ED - Stirmer, N. ED - Provis, J. T1 - Behaviour of reinforced alkali-activated fly ash mortars under leaching conditions T2 - Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019), Vol. 1: New Generation of Construction Materials N2 - Corrosion of steel reinforcement in concrete is one of the major deterioration mechanisms limiting the service life of reinforced concrete structures. While for conventional (Portland cement-based) concretes a great amount of experience exists in this regard, the factors that determine the onset of reinforcement corrosion in alkali-activated materials are incompletely understood yet. One aspect of corrosion protection is leaching and the accompanying changes of the concrete pore solution. In the present study, alkali-activated fly ash mortars with embedded carbon steel rebars were exposed to de-ionised water for periods up to 330 days, and the electrochemical response of the steel (free corrosion potential, polarisation resistance), the alteration of the mortar (ohmic resistance, mechanical strength, pore size distribution) as well as the pore solution composition were monitored. Although substantial alkali leaching was observed, the pH of the pore solution remained at values sufficient to protect the embedded steel from depassivation. The mortar did not exhibit indications of significant deterioration. Thus, the present results suggest that leaching is not critical for protection of steel reinforcement in alkali-activated fly ash mortars and concretes. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Alkali-activated materials KW - Steel corrosion KW - Leaching PY - 2019 SN - 978-2-35158-223-7 VL - 1 SP - 118 EP - 124 PB - RILEM Publications CY - Paris AN - OPUS4-47585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Reinemann, Steffi A1 - Gluth, Gregor A1 - Ebell, Gino A1 - Mietz, Jürgen T1 - Behaviour of reinforced alkali-activated fly ash mortars under leaching conditions N2 - Corrosion of steel reinforcement in concrete is one of the major deterioration mechanisms limiting the service life of reinforced concrete structures. While for conventional (Portland cement-based) concretes a great amount of experience exists in this regard, the factors that determine the onset of reinforcement corrosion in alkali-activated materials are incompletely understood yet. One aspect of corrosion protection is leaching and the accompanying changes of the concrete pore solution. In the present study, alkali-activated fly ash mortars with embedded carbon steel rebars were exposed to de-ionised water for periods up to 330 days, and the electrochemical response of the steel (free corrosion potential, polarisation resistance), the alteration of the mortar (ohmic resistance, mechanical strength, pore size distribution) as well as the pore solu¬tion composition were monitored. Although substantial alkali leaching was observed, the pH of the pore solution remained at values sufficient to protect the embedded steel from depassivation. The mortar did not exhibit indications of significant deterioration. Thus, the present results suggest that leaching is not critical for pro¬tec¬tion of steel reinforcement in alkali-activated fly ash mortars and concretes. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Alkali-activated materials KW - Leaching KW - Steel corrosion PY - 2019 AN - OPUS4-47621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Harnisch, J. A1 - Dauberschmidt, C. A1 - Ebell, Gino A1 - Mayer, T. T1 - The new DGZfP Specification B12 "Corrosion Monitoring of Reinforced Concrete Structures" T2 - International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures N2 - The corrosion of steel in reinforced concrete structures is one of the main threats to their durability. Based on the scientific achievements of the past decades the knowledge about the deterioration mechanisms and possible repair strategies for corrosion induced damages have found their way into practice. It is common sense, that a detailed assessment of the structure is the foundation for a successful repair measure. In addition to the “traditional” singular on-site-procedures such as measurement of concrete cover, carbonation depth, half-cell potentials and chloride contents the monitoring of corrosion related parameters has gained in importance over the past few years. The advantages of a corrosion monitoring are obvious. In new buildings, structural elements which cannot be assessed after completion (e.g. tunnel segments), or members with electrically isolating coatings can be monitored by means of integrated sensors providing an insight into the development of crucial parameters such as electrochemical potentials, corrosion currents and the electrical resistivity of the concrete. A less known but very beneficial field of application is the use of corrosion monitoring as an integral part of a repair measure based on principles such as the cathodic protection of steel in concrete (CP) or increasing the electrical resistivity of the concrete (IR). By implementing a corrosion monitoring system, it is possible to survey the time dependent effect of the repair measure on the corrosion process which may lead to a confirmation of successful repair measure or to a modification of the repair strategy. As the principle of cathodic protection for steel in concrete is a recognized repair measure today, the number of applications increases steadily and thus increasing the relevance for corrosion monitoring. Nevertheless, no standards or guidelines concerning the corrosion monitoring are available in Germany today, making it difficult to implement corrosion monitoring in common practice. With this in mind an international task group formed to develop the specification B12 “Corrosion Monitoring of Reinforced and Prestressed Concrete Structures” published by the German Society for Non-Destructive Testing, DGZfP, spring 2018. This paper will present the new specification B12 by highlighting the basic measurement principles and illustrating the potentials of corrosion monitoring for new and existing concrete structures by means of case studies. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Monitoring KW - Corrosion KW - Concrete structures PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487980 SP - We.4.A.1, 1 PB - SMAR 2019 AN - OPUS4-48798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Harnisch, J. A1 - Dauberschmidt, C. A1 - Ebell, Gino A1 - Meyer, T. T1 - The new DGZfP Specification B12 N2 - The corrosion of steel in reinforced concrete structures is one of the main threats to their durability. Based on the scientific achievements of the past decades the knowledge about the deterioration mechanisms and possible repair strategies for corrosion induced damages have found their way into practice. It is common sense, that a detailed assessment of the structure is the foundation for a successful repair measure. In addition to the “traditional” singular on-site-procedures such as measurement of concrete cover, carbonation depth, half-cell potentials and chloride contents the monitoring of corrosion related parameters has gained in importance over the past few years. The advantages of a corrosion monitoring are obvious. In new buildings, structural elements which cannot be assessed after completion (e.g. tunnel segments), or members with electrically isolating coatings can be monitored by means of integrated sensors providing an insight into the development of crucial parameters such as electrochemical potentials, corrosion currents and the electrical resistivity of the concrete. A less known but very beneficial field of application is the use of corrosion monitoring as an integral part of a repair measure based on principles such as the cathodic protection of steel in concrete (CP) or increasing the electrical resistivity of the concrete (IR). By implementing a corrosion monitoring system, it is possible to survey the time dependent effect of the repair measure on the corrosion process which may lead to a confirmation of successful repair measure or to a modification of the repair strategy. As the principle of cathodic protection for steel in concrete is a recognized repair measure today, the number of applications increases steadily and thus increasing the relevance for corrosion monitoring. Nevertheless, no standards or guidelines concerning the corrosion monitoring are available in Germany today, making it difficult to implement corrosion monitoring in common practice. With this in mind an international task group formed to develop the specification B12 “Corrosion Monitoring of Reinforced and Prestressed Concrete Structures” published by the German Society for Non-Destructive Testing, DGZfP, spring 2018. This paper will present the new specification B12 by highlighting the basic measurement principles and illustrating the potentials of corrosion monitoring for new and existing concrete structures by means of case studies. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Corrosion KW - Monitoring PY - 2019 AN - OPUS4-48805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faes, W. A1 - Lecompte, S. A1 - van Bael, J. A1 - Salenbien, R. A1 - Bäßler, Ralph A1 - Bellemans, I. A1 - Cools, P. A1 - de Geyter, N. A1 - Morent, R. A1 - Verbeken, K. A1 - de Paepe, M. T1 - Corrosion behaviour of different steel types in artificial geothermal fluids JF - Geothermics N2 - Geothermal energy is an interesting alternative to polluting fossil energy sources. Therefore, in Belgium, two wells have been drilled for a deep geothermal power plant. However, the environment to which the installations are exposed is challenging. The geothermal brine has 165 g/l total dissolved solids (of which 90% are sodium and chlorine) and the production temperature can be up to 130 °C. To assess their suitability to be used in a geothermal power plant, the corrosivity of the artificial brine to three common construction materials was investigated with exposure and electrochemical tests. The metals under consideration are a low-alloyed carbon steel (S235JR), an austenitic stainless steel (UNS S31603) and a duplex stainless steel (UNS S31803). The carbon steel, that was found to corrode uniformly, could be considered as a constructional material if a sufficient wall thickness is chosen. The austenitic stainless steel and the duplex stainless steel demonstrate very low uniform corrosion rates. They are however susceptible to pitting and crevice corrosion. To guarantee safe operation of the geothermal power plant, the susceptibility of the alloys to stress corrosion cracking should be tested and in situ experiments should be performed. KW - Geothermal energy KW - Corrosion KW - Carbon dioxide KW - Carbon steel KW - Stainless steel PY - 2019 DO - https://doi.org/10.1016/j.geothermics.2019.05.018 SN - 0375-6505 VL - 82 IS - 11 SP - 182 EP - 189 PB - Elsevier Ltd. AN - OPUS4-48759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The crevice corrosion behaviour of stainless steel 304 L n ECA fluids is investigated. Results are described, rules for operation are suggested T2 - Ceocor-Tagung 2019 CY - Copenhagen, Denmark DA - 21.05.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Observations of copper pitting corrosion in german tap waters N2 - In recent years, a new type of pitting corrosion is observed on half-had copper pipes. examples are given and possible reasons are discussed T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Water KW - Pitting KW - Corrosion KW - Copper KW - Drinking PY - 2019 AN - OPUS4-49281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - ECA KW - Crevice KW - Corrosion KW - Stainless KW - Steel PY - 2019 AN - OPUS4-49282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - A new type of copper pitting corrosion in german tap waters N2 - Half-hard copper pipes show pitting corosion under conditions until now seen as uncritical. Examples are discussed, possible causes described. T2 - MTECH 2019 CY - Porec, Croatia DA - 09.10.2019 KW - Drinking KW - Pitting KW - Corrosion KW - Copper KW - Water PY - 2019 AN - OPUS4-49283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Potential mapping at concrete structures N2 - Potentialmapping is an electrochemical measurement for the detection of active corroding reinforcement at concrete structures T2 - NDT-E Workshop CY - Berlin, Germany DA - 12.06.20196 KW - Korrosion KW - Potentialfeldmessung KW - Corrosion PY - 2019 AN - OPUS4-48278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Inhibition of hydrogen evolution on galvanized reinforcement in fresh concrete by addition of potassium permangante N2 - Due to the EUdirective53/2003/EEC,which has been in force since 17th January, 2005, restricts the soluble chromate content in cements to amaximum value of 2ppm. This ammount is to low to inhibit the hydrogen evolutuion by the cathodic partial reaction in fresh concrete. T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Galvanized reinforcement KW - Hydrogen PY - 2019 AN - OPUS4-48934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Hlaváček, Petr A1 - Gluth, Gregor A1 - Mietz, Jürgen A1 - Reinemann, S. T1 - Chloride induced corrosion of steel reinforcement in alkali activated fly ash mortars N2 - Electrochemical investigations to determine the chloride treshhold to induce pitting corrosion at steel reninforcement. T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Concrete PY - 2019 AN - OPUS4-48935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Material qualification in Saline, copper containing geothermal water T2 - Proceedings NACE International Corrosion Conference 2019 N2 - By exposure and electrochemical tests in the laboratory the Cu-effect on corrosion behavior of carbon steel, high-alloyed steels and Ti-alloy can be assessed. Critical materials specific properties were determined by static exposure and electrochemical tests in an artificial geothermal water with high salinity and low pH, containing Cu. Conclusions were drawn using characteristic potential values. It could be shown that significant Cu-deposition and -precipitation only occurred in combination with carbon steel. High-alloyed materials (S31603, S31653, S31700, S31703, S31803 and N08904) prevent the disturbing Cu-agglomeration. Therefore, they are suitable to be chosen for future design of the piping system, either in massive or in cladded form, if formation of crevices with non-metallic materials can be excluded. From the interactions and pitting corrosion point of view, R50400 seems to be most favorable. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - Copper KW - Corrosion KW - Steel KW - Geothermal energy PY - 2019 SP - 1 EP - 11 PB - NACE International CY - Houston AN - OPUS4-47911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications T2 - Proceedings of 1st International Conference on Corrosion Protection and Application N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Impedance spectroscopy: Theory, experiment and applications (Book review) T2 - Materials and Corrosion N2 - This textbook fulfills its dedication of being the “essential reference for the field, featuring protocols, analysis,fundamentals and the latest advances” of impedance spectroscopy to its readers. It really provides an insight in all facets of this powerful technique. It should not be missed in the bookshelf of electrochemists and all other interested researchers and engineers who want to be on the current state of this technique. KW - Impedance spectroscopy KW - Surface PY - 2019 DO - https://doi.org/10.1002/maco.201970064 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 6 SP - 1133 PB - WILEY ‐ VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Dictionary of Metallurgy and Metal Processing - English-German – German-English (Book review) T2 - Materials and Corrosion N2 - The first issue of this classic dictionary contains highly specialized terms, not only of the area of metallurgy but also of welding, soldering and corrosion. Special attention was paid by the author to a correct reference of each term according to the field of application. Finally, this book fulfills the intension of its author, to collect relevant terms with the correct pendant from a huge variety of sources and applications. It provides the user a foundation for correct terminology and communication for international contacts. KW - Metallurgy KW - Processing PY - 2019 DO - https://doi.org/10.1002/maco.201970104 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 11 SP - 1919 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-49304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Review: Physical Electrochemistry – Fundamentals, Techniques, and Applications T2 - Materials and Corrosion N2 - The second edition of this textbook on physical electrochemistry, written by two experienced teachers of physical chemistry, corrosion engineering and materials science and engineering, covers the current knowledge which should be transferred to students of these fields. In 20 chapters the fundamentals of electrochemistry, the most important electrochemical measurement techniques and applications of electrochemistry are covered. It can be concluded that this study fulfills its intension of “serving as a key textbook in undergraduate courses” dealing with electrochemistry and being “a reference source for graduated students, researchers and engineers” interested in this field. Teachers will find sufficient content for preparing lectures on this topic. Even self‐learning is well supported by the clear structure, presented content and provided sources for further reading. KW - Corrosion KW - Electrochemistry PY - 2019 DO - https://doi.org/10.1002/maco.201970124 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 12 SP - 2345 EP - 2346 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Conjugated polymers: Perspective, theory, and new materials (Book review) T2 - Materials and Corrosion N2 - In this also completely rewritten and reorganized second part of the two‐volume set 45 international experts comprise the current knowledge of conjugated polymers. In addition to part one on properties, processing characterization and morphology, 16 chapters cover perspectives, theory and new materials. Finally, it can be concluded that this 4th edition of this handbook fulfills, like the first part, its intention, to be the definitive resource on the topic of conducting polymers. This is assured by the updated and added contributions of all authors, which consider the significant developments both in fundamental understanding, progress and applications since publication of the previous edition. So, it can be recommended to everyone, who wants to get a comprehensive overview on conjugated polymers, not just to researchers, advanced students, and industry professionals working in materials science and engineering. KW - Polymer KW - Testing PY - 2019 DO - https://doi.org/10.1002/maco.201970094 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 9 SP - 1727 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph T1 - Review: Introduction to Materials for Advanced Energy Systems JF - Materials and Corrosion N2 - Since materials play an important role when designing and servicing industrial facilities. Also, for energy systems there is no way around. Selection of appropriate materials is an essential aspect for successful application and reliable service life. Future engineers must be made aware on the importance of this fact. So, they may prevail in techno‐economic discussions. The book fulfills its intension of providing to students in science and engineering a comprehensive understanding of different energy processes and what role materials play in this conjunction. Also, it gives interested engineers and scientists an insight in this matter. After being introduced the user should dig deeper in the existing detailed knowledge available for materials selection within these special conditions to assure a reliable operation of the energy production facility. KW - Energy systems KW - Materials PY - 2019 DO - https://doi.org/10.1002/maco.201970114 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 11 SP - 2140 EP - 2141 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-49719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Advanced ceramic and metallic coating and thin film materials for energy and environmental applications (Book review) T2 - Materials and Corrosion N2 - This book provides a state‐of‐the‐art overview on the processing, characterization, and modelling of metallic and ceramic materials used for energy and environmental applications. 17 scientists show a collection of current knowledge in 8 chapters. This book fulfills its intention to provide a reference book containing a collection of publications on thin films and coatings made of ceramic and metals used for energy and environmental applications. It covers a broad range of this topic and provides a comprehensive insight. Graduate and undergraduate students of materials science and mechanical engineering can find an overview on this topic to step in this interesting field of engineering. KW - Ceramic KW - Coating KW - Thin film KW - Energy PY - 2019 DO - https://doi.org/10.1002/maco.201970034 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 03 SP - 567 EP - 568 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Materials and processes for CO2 capture, conversion and sequestration (Book review) T2 - Materials and Corrosion N2 - This book provides an overview on research‐topics who need to be investigated when dealing with this topic, basing on the symposium in 2014. It addresses the key challenges involved in CCS materials design, processing and modelling. Readers can get an overview on topics one should consider when working in these field and selecting current Journal articles. KW - CCS KW - CO2-Corrosion KW - Microstructure PY - 2019 DO - https://doi.org/10.1002 maco.201970044 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 04 SP - 751 EP - 752 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Material qualification in saline, copper containing geothermal water N2 - By exposure and electrochemical tests in the laboratory the Cu-effect on corrosion behavior of carbon steel, high-alloyed steels and Ti-alloy can be assessed. Critical materials specific properties were determined by static exposure and electrochemical tests in an artificial geothermal water with high salinity and low pH, containing Cu. Conclusions were drawn using characteristic potential values. It could be shown that significant Cu-deposition and -precipitation only occurred in combination with carbon steel. High-alloyed materials (S31603, S31653, S31700, S31703, S31803 and N08904) prevent the disturbing Cu-agglomeration. Therefore, they are suitable to be chosen for future design of the piping system, either in massive or in cladded form, if formation of crevices with non-metallic materials can be excluded. From the interactions and pitting corrosion point of view, R50400 seems to be most favorable. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - copper KW - corrosion KW - geothermal energy KW - steel PY - 2019 AN - OPUS4-47912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Knauer, S. T1 - Factors Influencing Droplet Corrosion in Dense Phase CO2 N2 - This work examined the factors that influence the droplet corrosion of CO2 pipeline steels caused by oxyfuel flue gases in dense phase CO2 at 278 K, simulating the underground transport conditions. The wetting properties were studied by contact angle measurement, revealing pH and time dependency on the reactive wetting behaviors of carbon steel X70. Exposure tests with CO2 saturated water droplet on steel surface showed that the impurities (220 ppmv SO2 and 6700 ppmv O2) diffused into the droplet and then reacted with metal surfaces in dense phase condition, forming the corrosion products. The corrosion rate was confirmed strongly depending on the droplet volume as well as the SO2 concentration. Condensation experiments carried out on freshly polished coupons in CO2 with 200 ppmv H2O, 220 ppmv SO2 and 6700 ppmv O2, showed that the formation and aggregation of droplets is time and temperature dependent. At 278 K, condensation happened stronger and the corrosion products, mainly consisted of dense hydrated FeSO3/FeSO4. While at 288 K, more fluffy corrosion products consisting of iron oxide/hydroxide and hydrated FeSO3/FeSO4 were found. Further exposure tests on carbon steel coupons with different surface roughness did not reveal the difference in weight loss/gain and therefore the corrosion rate. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - Carbon Capture, Utilization and Storage (CCUS) KW - Supercritical/dense phase CO2 KW - Carbon steel KW - Droplet corrosion KW - Condensation PY - 2019 AN - OPUS4-47916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beck, Joana T1 - Review: Fitz's Atlas™of coating surveys JF - Materials and Corrosion N2 - Fitz's Atlas of coating surveys is designed as loose‐leave binder with a resistant cover that not only provides the possibility of updating the Atlas easily but also makes it practicable for on‐site use. This binder is well structured by sheet dividers with tabs for each of the 16 chapters. All in all, this atlas supports the surveyor by giving practicable hints and advice, lists and pictures to prepare and conduct investigations and write surveys. KW - Coating KW - Survey KW - Protection PY - 2019 DO - https://doi.org/10.1002/maco.201970084 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 8 SP - 1508 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beck, Joana T1 - Handbook of material weathering (Book review) T2 - Materials and Corrosion N2 - With its almost 1000 pages and 1.7 kg this handbook feels like holding the holy bible for users of weathering techniques as well as for technicians, engineers and scientist planning to test polymeric products behavior in natural or artificial environments. KW - Corrosion KW - Testing PY - 2019 DO - https://doi.org/10.1002 maco.201970014 SN - 0947-5117 VL - 70 IS - 01 SP - 170 EP - 171 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin T1 - Investigation of the salinization in marine and offshore environment - test methods and challenges N2 - Salinization and contamination of metal surfaces by chloride-containing aerosols is of great importance with regard to corrosion phenomena in the maritime sector and in offshore applications. Especially Offshore Wind Turbines are exposed to extreme corrosive conditions due to high chloride concentrations in the atmosphere and the resulting high chloride deposition rates. It is of great importance to evaluate to what extent salinization of the surface influences the corrosion protection of coatings and pitting occurrence on stainless steels under atmospheric conditions to evaluate the durability of metallic building structures in offshore and marine environments. The evaluation of the scientific literature and regulatory guidelines has shown that there are still many open questions regarding the contamination of metal surfaces by chlorides. This contribution will discuss how salinization of metal surfaces is evaluated and monitored according to current standards and guidelines. Future challenges concerning test methods and the application of evaluated salinization values and deposition rates will be discussed. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Maritime Atmosphäre KW - Versalzung KW - Maritime atmosphere KW - Salinization PY - 2019 AN - OPUS4-48787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin T1 - Investigation of the salinization in marine and offshore environment - test methods and challenges T2 - Proceedings of the International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures N2 - Salinization and contamination of metal surfaces by chloride-containing aerosols is of great importance with regard to corrosion phenomena in the maritime sector and in offshore applications. Especially Offshore Wind Turbines are exposed to extreme corrosive conditions due to high chloride concentrations in the atmosphere and the resulting high chloride deposition rates. It is of great importance to evaluate to what extent salinization of the surface influences the corrosion protection of coatings and pitting occurrence on stainless steels under atmospheric conditions to evaluate the durability of metallic building structures in offshore and marine environments. The evaluation of the scientific literature and regulatory guidelines has shown that there are still many open questions regarding the contamination of metal surfaces by chlorides. This contribution will discuss how salinization of metal surfaces is evaluated and monitored according to current standards and guidelines. Future challenges concerning test methods and the application of evaluated salinization values and deposition rates will be discussed. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.20019 KW - Maritime Atmosphäre KW - Versalzung KW - Maritime atmosphere KW - Salinization PY - 2019 SP - Th.2.A.5, 1 EP - 8 PB - SMAR 2019 AN - OPUS4-48905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Effect of CO2 gas on carbon steel corrosion in an acidic-saline based geothermal fluid T2 - Electronic Proceedings Eurocorr 2019 N2 - Geothermal energy is one of the most promising energy resources to replace fossil fuel. To extract this energy, hot fluids of various salts and gases are pumped up from a geothermal well having a certain depth and location. Geothermal wells in volcanic regions often contain highly corrosive CO2 and H2S gases that can be corrosive to the geothermal power-plants, which are commonly constructed of different steels, such as carbon steel. This research focuses on the corrosion behaviour of carbon steel exposed to an artificial geothermal fluid containing CO2 gas, using an artificial acidic-saline geothermal brine as found in Sibayak, Indonesia. This medium has a pH of 4 and a chloride content of 1,500 mg/L. Exposure tests were conducted for seven days at 70 °C and 150 °C to simulate the operating temperatures for low and medium enthalpy geothermal sources. Surface morphology and cross-section of the specimens from the above experiments were analysed using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical tests via open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were performed to understand the corrosion processes of carbon steel in CO2-containing solution both at 70 °C and 150 °C. Localized corrosion was observed to a greater extent at 70 °C due to the less protectiveness of corrosion product layer compared to that at 150 °C, where FeCO3 has a high corrosion resistance. However, a longer exposure test for 28 days revealed the occurrence of localized corrosion with deeper pits compared to the seven-day exposed carbon steel. In addition, corrosion product transformation was observed after 28 days, indicating that more Ca2+ cations incorporate into the FeCO3 structure. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon steel KW - CO2 KW - EIS KW - Geothermal KW - Corrosion PY - 2019 SP - Paper 200245, 1 EP - 5 CY - Madrid, Spain AN - OPUS4-49099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Electrochemical deposition of polyaniline on carbon steel for corrosion study in geothermal solution JF - Materials Science Forum N2 - Polyaniline has been widely developed for many applications, e.g. sensor, supercapacitor components, electrochromic devices, and anticorrosion pigments. Although the addition of polyaniline pigment in organic coatings has been an alternative for corrosion protection in industrial applications, the protection mechanism is still not fully understood. Herein in this study, as a part of the development of polyaniline/silicon dioxide coating for geothermal application, polyaniline has been deposited electrochemically on carbon steel surface in oxalic acid medium and tested in geothermal solution to understand the contribution of polyaniline to the corrosion protection of a polyaniline-based composite in the geothermal system. To observe the surface/interface reaction between the electrolyte and electrode surface during the electrochemical polymerization, electrochemical impedance spectroscopy (EIS) was applied after each cycle. For corrosion study in the geothermal application, an artificial geothermal solution was used with the composition of 1,500 mg/l Cl⁻, 20 mg/l SO₄²⁻, 15 mg/l HCO₃⁻, 200 mg/l Ca²⁺, 250 mg/l K⁺, and 600 mg/l Na⁺, and pH 4 to simulate a geothermal brine found in Sibayak, Indonesia. An electrochemical measurement was performed by monitoring the open circuit potential over seven days, with the interruption by EIS every 22 hours. The experiments were performed at room temperature and 150 °C (1 MPa) in an oxygen-free environment. Impedance spectra showed a reduction of the total impedance value of approximately 10 times for specimens measured at 150 °C compared to the specimens measured at room temperature, suggesting a less stable layer at high temperature. KW - Corrosion KW - Electrochemical deposition KW - Polyaniline PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.966.107 SN - 1662-9752 VL - 966 SP - 107 EP - 115 PB - Trans Tech Publications Ltd CY - Zürich AN - OPUS4-48776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Corrosion of Carbon Steel in Artificial Geothermal Brine: Influence of Carbon Dioxide at 70 °C and 150 °C JF - Materials N2 - This study focuses on the corrosion mechanism of carbon steel exposed to an artificial geothermal brine influenced by carbon dioxide (CO2) gas. The tested brine simulates a geothermal source in Sibayak, Indonesia, containing 1500 mg/L of Cl-, 20 mg/L of SO4 2-, and 15 mg/L of HCO3-with pH 4. To reveal the temperature effect on the corrosion behavior of carbon steel, exposure and electrochemical tests were carried out at 70 °C and 150 °C. Surface analysis of corroded specimens showed localized corrosion at both temperatures, despite the formation of corrosion products on the surface. After 7 days at 150 °C, SEM images showed the formation of an adherent, dense, and crystalline FeCO3 layer. Whereas at 70 °C, the corrosion products consisted of chukanovite (Fe2(OH)2CO3) and siderite (FeCO3), which are less dense and less protective than that at 150 °C. Control experiments under Ar-environment were used to investigate the corrosive effect of CO2. Free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) confirm that at both temperatures, the corrosive effect of CO2 was more significant compared to that measured in the Ar-containing solution. In terms of temperature effect, carbon steel remained active at 70 °C, while at 150 °C, it became passive due to the FeCO3 formation. These results suggest that carbon steel is more susceptible to corrosion at the near ground surface of a geothermal well, whereas at a deeper well with a higher temperature, there is a possible risk of scaling (FeCO3 layer). A longer exposure test at 150 °C with a stagnant solution for 28 days, however, showed the unstable FeCO3 layer and therefore a deeper localized corrosion compared to that of seven-day exposed specimens. KW - Carbon steel KW - CO2 KW - Corrosion KW - Electrochemical impedance spectroscopy KW - Geothermal PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498168 DO - https://doi.org/10.3390/ma12223801 SN - 1996-1944 VL - 12 IS - 22 SP - 3801-1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-49816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Roth, C. T1 - The Effect of Different Polyaniline Types in Silicon Dioxide Containing Coatings for Carbon Steel Protection in Artificial Geothermal Brines N2 - According to the results of the experiments carried out, the following points can be concluded: 1. Exposure tests showed that specimens with the addition of SiO2 particles and polyaniline particles exhibit better corrosion resistance than specimens with the addition of only polyaniline particles or binder only. 2. Open circuit potential measurements showed that in the beginning of the experiments, both coatings had an open circuit potential 100 mV higher than carbon steel. Within one day of immersion, the potential of carbon steel increased significantly, indicating the formation of oxide layer. After extended exposure the carbon steel potential sat between PS1 (which had higher potential) and PS2 (which had a lower potential) and all three were in the range –600 mV to –500 mV vs Ag/AgCl. 3. Both coatings PS-1 and PS-2 were degraded with increasing exposure time, shown by the decrease of absolute impedance value at low frequency range after 2, 4, and 6 days exposure. 4. Potentiodynamic test was performed after 3 hours and 6 days exposure, and it was shown that the coating in the initial stage exhibited more passive behavior than the specimens exposed for 6 days. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - Geothermal KW - Coating KW - Polyaniline KW - Corrosion PY - 2019 AN - OPUS4-47914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Electrochemical measurement of polyaniline containing coating at high temperature: PROBLEMS AND CHALLENGES N2 - This presentation describes special aspects when performing measurements at high temperatures. Especially electrochemical issues are addressed for impedance spectroscopy, like overlapping time constants, handling of noise etc. T2 - Electrochemical Doctoral School “Corrosion: from analysis to modelling” CY - Brussels Belgium DA - 04.02.2019 KW - Polyaniline KW - Geothermal KW - Electrochemical impedance spectroscopy PY - 2019 AN - OPUS4-47917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, G. A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Roth, C. T1 - The Effect of Different Polyaniline Types in Silicon Dioxide Containing Coatings for Carbon Steel Protection in Artificial Geothermal Brines T2 - Proceedings NACE International Corrosion Conference 2019 N2 - According to the results of the experiments carried out, the following points can be concluded: 1. Exposure tests showed that specimens with the addition of SiO2 particles and polyaniline particles exhibit better corrosion resistance than specimens with the addition of only polyaniline particles or binder only. 2. Open circuit potential measurements showed that in the beginning of the experiments, both coatings had an open circuit potential 100 mV higher than carbon steel. Within one day of immersion, the potential of carbon steel increased significantly, indicating the formation of oxide layer. After extended exposure the carbon steel potential sat between PS1 (which had higher potential) and PS2 (which had a lower potential) and all three were in the range –600 mV to –500 mV vs Ag/AgCl. 3. Both coatings PS-1 and PS-2 were degraded with increasing exposure time, shown by the decrease of absolute impedance value at low frequency range after 2, 4, and 6 days exposure. 4. Potentiodynamic test was performed after 3 hours and 6 days exposure, and it was shown that the coating in the initial stage exhibited more passive behavior than the specimens exposed for 6 days. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - Geothermal KW - Coating KW - Polyaniline KW - Corrosion PY - 2019 SP - 13121-1 EP - 13121-14 PB - NACE International CY - Houston AN - OPUS4-47913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -