TY - JOUR A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Lkhagvasuren, B. A1 - Oyuntungalag, U. A1 - Rausch, J. T1 - Certified reference material for determination of total cyanide in soil [BAM-U116/CGL306] N2 - CRM (Certified Reference Material) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between CGL (Central Geological Laboratory) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. KW - CRM KW - Cyanide in soil KW - Total cyanide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469694 DO - https://doi.org/10.17265/2162-5263/2018.04.004 SP - 149 EP - 161 PB - David Publishing AN - OPUS4-46969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - "Keine Dienstmagd" - Analytical Sciences in Action N2 - Analytical Sciences has developed from Ostwald’s “unentbehrlichen Dienstmagd” to a chemical discipline at the core of many of today’s fundamental and applied scientific problems and innovations. An atomic or molecular understanding of basic processes in chemistry, soft matter physics, materials and life science is enabled only through new analytical methods and instrumentation. Similar observations can be found for pressing sociopolitical conflicts of the future: A rational discussion of global climate change or new energy sources is only possible with reliable analytical results. Progress in Analytical Sciences is only possible if the underlying interdisciplinary character is acknowledged and valued. The talk will illustrate the scope of modern Analytical Science through examples from process analysis relevant to modern process intensification and industry 4.0 to bioanalysis and the use of synchrotron radiation to elucidate fundamental reactions materials. T2 - MChG Talk CY - Technische Universität München, Germany DA - 27.11.2018 KW - Analytical Sciences PY - 2018 AN - OPUS4-46940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalanthan-Budau, Nithiya A1 - Moser, Marko A1 - Roloff, Alexander A1 - Moldenhauer, Daniel T1 - Quantification of Surface Groups on Nanomaterials with Simple Optical Methods N2 - Surface functionalization of nanomaterials is nowadays at the core of many applications of functional materials in the life and material sciences. Examples range from membranes and microarrays over bead-based assays, and next generation sequencing to nanometer-sized optical reporters, nanosensors, and magnetic and optical contrast agents. Typical function-nalization steps include silanization and grafting reactions with reactive monomers to introduce functional groups like amino or carboxylic acid groups or the attachment of ligands like polyethylene glycol (PEG) molecules and biomolecules. [1-3] This enables to tune e.g., dis-persibility, hydrophilicity and biocompatibility, minimize unspecific interactions, improve biofunctionalization efficiencies, and enhance blood circulation times and allows for the use of nanomaterials as reporters in assays or the design of targeted probes for bioimaging. At the core of all functionalization strategies are reliable and validated methods for surface group and ligand quantification that can be preferably performed with routine laboratory instrumentation, require only small amounts of substances, and are suitable for many different types of nanomaterials. [3] There is meanwhile a considerable need to make these methods traceable. We present here versatile and simple concepts for the quantification of common functional groups, ligands, and biomolecules on different types of organic and inorganic nanomaterials, using conventional and newly developed cleavable and multimodal reporters, that can be detected with optical spectroscopy. [4-7] These reporters are chosen to enable method validation with the aid of method comparisons and mass balances. Also, strategies how to make these simple assays traceable to SI units using quantitative nuclear resonance spectroscopy (qNMR) and X-ray photoelectron spectroscopy (XPS) are derived. T2 - JRC-NIST Workshop CY - Ispra, Italy DA - 04.12.2018 KW - Nanoparticle KW - Nanocrystal KW - Absolute fluorometry KW - Fluorescence KW - Surface chemistry KW - Assay KW - Cleavable probe KW - Conductometry KW - Quantification KW - Functional group PY - 2018 AN - OPUS4-46950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - The future of analytical sciences: Trends and challenges N2 - What is the future of Analytical Sciences? The talk starts with a definition, comparing the current view with that from 1968. How do wie set trends? How do we get Analytics inside? Some examples of "Big Science" are given and discussed in relation to a definition of AS. How does AS face the current Grand Challenges? As exaples for something significant, several exaples are presented, such as Climate Change of Hydrogen Storage. Another important trand are eScience and automation concepts for AS, which are highlighted. But (Analytical) Science has to be politcal in our times to face Fake News and to breake barriers! T2 - Sonderkolloquium Abteilung 1 "Analytische Chemie; Referenzmaterialien" CY - Berlin, Germany DA - 05.10.2018 KW - Analytical science KW - Grand challenges KW - Big science KW - Fake news KW - Climate change PY - 2018 AN - OPUS4-47285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - New photodegradation products of the fungicide fluopyram: Structural elucidation and mechanism identification N2 - Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular. KW - Photodegradation KW - Transformation products KW - LC-MS/MS KW - HRMS KW - Fungicide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466347 DO - https://doi.org/10.3390/molecules23112940 SN - 1420-3049 VL - 23 IS - 11 SP - 2940, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-46634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - BERM CY - Berlin, Germany DA - 23.09.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - 4th International Glow Discharge Spectroscopy Symposium CY - Berlin, Germany DA - 15.04.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schrezenmeier, E. A1 - Hoffmann, F. A1 - Jaeger, C. A1 - Schrezenmeier, J. A1 - Lisec, Jan A1 - Glander, P. A1 - Algharably, E. A1 - Kreutz, R. A1 - Budde, K. A1 - Duerr, M. A1 - Halleck, F. T1 - Pharmacokinetics of Daclatasvir, Sofosbuvir and GS-331007 in a Prospective Cohort of HCV positive Kidney Transplant Recipients N2 - Limited data exist on the pharmacokinetic profile of novel direct acting antivirals in kidney transplant recipients. Daclatasvir is primarily eliminated via the biliary route and sofosbuvir via the renal route; here we report the pharmacokinetic profile of combined treatment with these compounds in a prospective study of hepatitis C virus positive kidney transplant recipients (EudraCT: 2014-004551-32). In this study plasma samples of 16 HCV positive kidney transplant recipients receiving daclatasvir and sofosbuvir were collected at 4 time points at day 1, 7, 14, 21, 56, and 84 after start of treatment. Inclusion criteria were stable graft function and an estimated GFR (eGFR) > 30mL/min/1.73m. Daclatasvir, sofosbuvir and GS-331007 (inactive metabolite of sofosbuvir) plasma concentrations were determined using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. All patients showed a rapid virological response with HCV RNA below the detection limit 21 days after the start of therapy (medium time to viral clearance). No difference of the areas under the concentration-time curve (AUC) of daclatsavir, sofosbuvir and GS-331007 was observed between patients with an eGFR below or ≥ 60mL/min. For GS-331007, no relevant changes of trough levels were observed over time. Mean GS-331007 trough levels were 339.5±174.9 ng/mL in patients with an eGFR ≥ 60mL/min and 404.3±226 ng/mL in patients with an eGFR < 60mL/min at day 7 (p=0.52). At day 84, GS-331007 trough levels were 357.8±200.8 ng/mL and 404.2±70.2 ng/mL in patients with an eGFR ≥ 60 mL/min and in patients with an eGFR < 60 mL/min, respectively (p=0.51). The accumulation ratios of renally eliminated GS-331007 for AUC and Cmax did not significantly differ between the two eGFR groups at day 7. An impaired eGFR (30-60 mL/min) does not lead to a dose accumulation of daclatasvir, sofosbuvir and GS-331007. This study provides the rationale for future studies investigating the pharmacokinetic profile of sofosbuvir based HCV treatment in kidney transplant recipients with an eGFR < 30 mL/min. KW - Mass-Spectrometry PY - 2018 DO - https://doi.org/10.1097/FTD.0000000000000567 SN - 0163-4356 VL - 41 IS - 1 SP - 53 EP - 58 PB - Wolters Kluwer AN - OPUS4-46647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Eisentraut, Paul A1 - Dittmann, Daniel A1 - Ruhl, A.S. A1 - Eitzen, L. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Thermoanalytical methods for the optimisation of microplastic analysis in freshwater sediment samples N2 - Results of various thermoanalytical techniques are presented for the analysis of microplastics in sediment samples. The homogeneity and the representativness of samples war controlled, as well as steps of separation and microplastic detection by these techniques. T2 - MICRO CY - Lanzarote, Spain DA - 19.11.2018 KW - Water KW - Microplastics KW - Sampling KW - Sampling techniques PY - 2018 AN - OPUS4-47322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Optimum Magnification Factor in Digital Radiography - Selection Criteria and Formulas N2 - The transition from X-ray film to digital detectors in radiography is accompanied by an increase of unsharpness due to the larger inherent digital detector unsharpness in comparison to film. The basic spatial resolution of digital detectors (see EN ISO 17636-2) is used today to describe this unsharpness. The geometrical unsharpness of the radiographic projection of object structures onto the detector plane is determined by the focal spot size of the X-ray tube and the magnification. The focal spot size is measured today (see ASTM E 1165) from pin hole camera exposures or edge unsharpness (see ASTM E 2903). The final image unsharpness is a result of a convolution of the geometrical and inherent detector unsharpness function, divided by the magnification factor of the object onto the detector plane. Different approximations of this convolution result in ASTM E 1000 and ISO 17636-2 in different optimum values for the magnification factor for a given focal spot size of a X—ray tube and the basic spatial resolution of the detector. The higher contrast sensitivity, an advantage of digital radiography, compared to film radiography is furthermore improved when using higher X-ray voltages as used with film and smaller focal spots of the X-ray tubes. This allows a higher distance between object and detector resulting in reduced object scatter in the image. The interactions between all these parameters will be discussed and simple rules for practitioners will be derived in this contribution. T2 - 12th ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Digital Radiology KW - Image unsharpness KW - Optimum magnification PY - 2018 AN - OPUS4-47351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -