TY - JOUR A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, J. A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine in Amperometric Assays N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for Monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3’,5,5’-tetramethylbenzidine (TMB),form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detectionstep, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphonebased, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis forsensing of further analytes. KW - Ochratoxin A KW - Amperometry KW - Cyclic voltammetry KW - Electrochemistry KW - Immunoassay PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530421 DO - https://doi.org/10.1002/celc.202100446 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 8 IS - 13 SP - 2597 EP - 2606 AN - OPUS4-53042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Devi, Sarita A1 - Riedel, Soraya A1 - Döring, Sarah A1 - Hiller, Lukas A1 - Kaliyaraj Selva Kumar, Archana A1 - Flemig, Sabine A1 - Singh, Chandan A1 - Konthur, Zoltán A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Antibodies Functionalized Magnetic Fe-Metal-Organic Framework Based Biosensor for Electrochemical Detection of Tetanus Neurotoxin N2 - This work presents a metal-organic framework (MOF)-integrated microfluidic flow-cell (MFC) based immunodetection of the tetanus toxoid (TT) using electrochemical technique for the first time. The magnetic property of Fe-MOF helped to hold them on the working electrode at detection zone of MFC surpassing the requirement of additional conjugation chemistry, whereas the conductive property was utilized to observe the change in signal efficiency in the presence of TT. The one-pot hydrothermal synthesis of a magnetic and conductive iron-based MOF (Fe-MOF) was performed using the Fe3 +/Fe2+ precursors as 1.2/1 mmol and dual ligands, i.e., tetrahydroxy-1,4-benzoquinone and 2-aminobenzene-1,4-dicarboxylic acid. The Fe-MOF was conjugated with L-phenylalanine (Fe-MOF/Phe) to increase its electric conductivity owing to the enhanced electron flow rate. The human monoclonal antibody SA13 against TT (anti-TT mAb) was conjugated on the Fe-MOF/Phe surface with the help of ethylenediamine (Fe-MOF/Phe/EDA/anti-TT mAb). The binding affinity of Fe-MOF/Phe/EDA/anti-TT mAb for the TT antigen was evaluated using cyclic voltammetry technique. The limit of detection of the Fe-MOF/Phe/EDA/anti-TT mAb-based biosensor for TT was 9.4 ng/ml in spiked buffer. This study shows the applicability of these Fe-MOFs in the detection of various other microbial toxins or other biomolecules. KW - Antikörper KW - Elektrochemischer Immunoassay KW - Molecular Organic Framework (MOF) KW - Microfluidics KW - Rekombinant PY - 2025 DO - https://doi.org/10.1016/j.snb.2025.137381 SN - 0925-4005 VL - 431 SP - 1 EP - 12 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-62673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zia, Ghezal Ahmad Jan A1 - Hanke, Thomas A1 - Skrotzki, Birgit A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Enhancing Reproducibility in Precipitate Analysis: A FAIR Approach with Automated Dark-Field Transmission Electron Microscope Image Processing N2 - AbstractHigh-strength aluminum alloys used in aerospace and automotive applications obtain their strength through precipitation hardening. Achieving the desired mechanical properties requires precise control over the nanometer-sized precipitates. However, the microstructure of these alloys changes over time due to aging, leading to a deterioration in strength. Typically, the size, number, and distribution of precipitates for a quantitative assessment of microstructural changes are determined by manual analysis, which is subjective and time-consuming. In our work, we introduce a progressive and automatable approach that enables a more efficient, objective, and reproducible analysis of precipitates. The method involves several sequential steps using an image repository containing dark-field transmission electron microscopy (DF-TEM) images depicting various aging states of an aluminum alloy. During the process, precipitation contours are generated and quantitatively evaluated, and the results are comprehensibly transferred into semantic data structures. The use and deployment of Jupyter Notebooks, along with the beneficial implementation of Semantic Web technologies, significantly enhances the reproducibility and comparability of the findings. This work serves as an exemplar of FAIR image and research data management. KW - Industrial and Manufacturing Engineering KW - General Materials Science KW - Automated image analysis KW - FAIR research data management KW - Reproducibility KW - microstructural changes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593905 DO - https://doi.org/10.1007/s40192-023-00331-5 SN - 2193-9772 SP - 1 EP - 15 PB - Springer Science and Business Media LLC CY - Heidelberg AN - OPUS4-59390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alekseychuk, V. O. A1 - Kupsch, Andreas A1 - Plotzki, D. A1 - Bellon, Carsten A1 - Bruno, Giovanni T1 - Simulation-Assisted Augmentation of Missing Wedge and Region-of-Interest Computed Tomography Data N2 - This study reports a strategy to use sophisticated, realistic X-ray Computed Tomography (CT) simulations to reduce Missing Wedge (MW) and Region-of-Interest (RoI) artifacts in FBP (Filtered Back-Projection) reconstructions. A 3D model of the object is used to simulate the projections that include the missing information inside the MW and outside the RoI. Such information augments the experimental projections, thereby drastically improving the reconstruction results. An X-ray CT dataset of a selected object is modified to mimic various degrees of RoI and MW problems. The results are evaluated in comparison to a standard FBP reconstruction of the complete dataset. In all cases, the reconstruction quality is significantly improved. Small inclusions present in the scanned object are better localized and quantified. The proposed method has the potential to improve the results of any CT reconstruction algorithm. KW - Computed tomography KW - Missing wedge KW - Region of interest KW - Augmented data KW - CT simulation KW - aRTist PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593799 UR - https://www.mdpi.com/2313-433X/10/1/11 DO - https://doi.org/10.3390/jimaging10010011 SN - 2313-433X VL - 10 IS - 1 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-59379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obenlüneschloß, Jorit A1 - Boysen, Nils A1 - Rönnby, Karl A1 - Muriqi, Arbresha A1 - Hoffmann, Volker A1 - Abad Andrade, Carlos Enrique A1 - Rogalla, Detlef A1 - Brokmann, Ulrike A1 - Rädlein, Edda A1 - Nolan, Michael A1 - Devi, Anjana T1 - Rare Mononuclear Lithium-Carbene Complex for Atomic Layer Deposition of Lithium Containing Thin Films N2 - Lithium is the core material of modern battery technologies and fabricating the lithium‐containing materials with atomic layer deposition (ALD) confers significant benefits in control of film composition and thickness. In this work, a new mononuclear N‐heterocyclic carbene (NHC) stabilized lithium complex, [Li(tBuNHC)(hmds)], is introduced as a promising precursor for ALD of lithium‐containing thin films. Structural characterization is performed, comparing density functional theory (DFT) and single‐crystal X‐ray diffraction (SC‐XRD), confirming a rare mononuclear structure. Favorable thermal properties for ALD applications are evidenced by thermogravimetric analysis (TGA). The compound exhibits a low melting point, clean evaporation, and its volatility parameters are encouraging compared to other lithium precursors. ALD trials using [Li(tBuNHC)(hmds)] with ozone demonstrate its effectiveness in depositing LiSixOy films. The ALD process exhibits a saturated growth per cycle (GPC) of 0.95 Å. Compositional analysis using Rutherford backscattering spectrometry/nuclear reaction analysis (RBS/NRA), X‐ray photoelectron spectrometry (XPS), and glow discharge optical emission spectrometry (GD‐OES), confirms the presence of lithium and silicon in the expected ratios. This work not only presents a new ALD precursor but also contributes to the understanding of lithium chemistry, offering insights into the intriguing coordination chemistry and thermal behavior of lithium complexes stabilized by NHC ligands. KW - Atomic layer deposition (ALD) KW - N-heterocyclic carbene (NHC) ligands KW - Lithium ALD precursor chemistry KW - Mononuclear Li–carbene complex [Li(tBuNHC)(hmds)] KW - Li-silicate thin films (LiSixOy) KW - Thermal properties & TGA/volatility KW - Compositional analysis (RBS/NRA, XPS, GD-OES) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643790 DO - https://doi.org/10.1002/anie.202513066 SN - 1433-7851 N1 - Es gibt eine parallele Sprachausgabe (deutsch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (German), a link is in the field related identifier SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Danischewski, Julia L. A1 - You, Yi A1 - Bauer, Lauren A1 - Riedel, Jens A1 - Shelley, Jacob T. T1 - Use of Resonant Acoustic Fields as Atmospheric-Pressure Ion Gates N2 - Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis. Unfortunately, these devices rely on pulsed high voltage sources and are not fully transparent, even in their open state, which can lead to ion losses and contamination. Here, a novel atmospheric-pressure ion gate based on a resonant acoustic field structure is described. This effect was accomplished through the formation of a resonant, standing acoustic wave of alternating nodes and antinodes. Alignment of an atmospheric-pressure gaseous ion beam with an antinode, i.e. a region of transient pressure, of the acoustic structure acted as a gate and blocked ions from impinging on ion-selective detectors, such as a mass spectrometer and a Faraday plate. The velocity of the ion stream and acoustic power were found to be critical parameters for gating efficiency. In the presence of an acoustic field (i.e., a closed gate), ion signals decreased by as much as 99.8% with a response time faster than the readout of the ion-measurement devices used here (ca. 75 ms). This work demonstrates the basis for a low-cost, acoustic ion gate, which is optically transparent and easily constructed with low-power, off-the-shelf components, that could potentially be used with MS and IMS instrumentation. KW - Acoustic Ion Manipulation PY - 2025 DO - https://doi.org/10.1021/acs.analchem.4c05493 SN - 1520-6882 VL - 97 IS - 5 SP - 2890 EP - 2898 PB - American Chemical Society AN - OPUS4-62648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Onyenso, Gabriel A1 - AI-Zawity, Jiwar A1 - Farahbakhsh, Nastaran A1 - Schardt, Annika A1 - Yadigarli, Aydan A1 - Vakamulla Raghu, Swathi Naidu A1 - Engelhard, Carsten A1 - Müller, Mareike A1 - Schönherr, Holger A1 - Killian, Manuela S. T1 - Novel Ag-modified zirconia nanomaterials with antibacterial activity N2 - The outcome of an implant procedure largely depends on the implant's surface properties. Biomaterials are now designed to have surfaces with multifunctionality, such as favorable tissue integration and the ability to combat bacterial adhesion and colonization. Herein, we report on a simple approach to improve the antibacterial properties of zirconia nanotubes (ZrNTs) coatings by decorating with silver nanoparticles (AgNP), achieved through electrochemical anodization of a zirconium–silver alloy (Zr–Ag). The AgNPs were shown to partially consist of Ag2O, potentially enhancing the availability of Ag+ ions for antibacterial activity. The modified ZrNTs were characterized using SEM, EDS, ToF-SIMS, and XPS to determine their structural morphology and chemical composition, and were further subjected to antibacterial testing. The silver and zirconium ion release behavior was monitored via ICP-MS. ZrNTs decorated with AgNP exhibit strong antimicrobial activity (>99% bacterial killing) against both S. aureus and E. coli. Antimicrobial tests indicate that the antibacterial activity against the Gram-positive pathogen S. aureus was improved by a factor of 100 compared to unmodified ZrNTs, while unmodified ZrNTs already showed a comparable reduction of viable Gram-negative E. coli. This strategy illustrates a straightforward and effective modification that optimizes the interface between the host environment and the biomaterial surface to meet the very important criteria of biocompatibility and active antibacterial response. KW - Mass Spectrometry KW - Nanoparticles KW - Advanced Materials KW - ICP-MS KW - Antimicrobial material KW - ToF-SIMS PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653990 DO - https://doi.org/10.1039/d5ra07099f SN - 2046-2069 VL - 16 IS - 3 SP - 2286 EP - 2297 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Putzu, Mara A1 - Wiesner, Yosri A1 - Weimann, Christiane A1 - Hodoroaba, Vasile-Dan A1 - Muniategui Lorenzo, Soledad A1 - Fernández-Gonzáles, Verónica A1 - Booth, Andy M. A1 - Igartua, Amaia A1 - Benismail, Nizar A1 - Coïc, Laureen A1 - Chivas-Joly, Carine A1 - Fenoglio, Ivana A1 - Rossi, Andrea Mario A1 - Giovannozzi, Andrea Mario A1 - Altmann, Korinna T1 - Optimization of tablet processing as a reference material for microplastic detection methods N2 - Reference materials (RMs) are essential and highly demanded tools for the development and validation of methods for microplastic (MP) quantification in complex matrices, to ensure comparable and harmonized approaches aligned with EU commission criteria for monitoring MPs (e.g., Drinking Water Directive and Urban Wastewater Treatment Directive). This study investigates different approaches for optimizing the production of polypropylene (PP) RMs in the form of water-soluble tablets, which were carefully evaluated for their homogeneity and stability according to ISO Guide 30, ISO 33401, and ISO 33405. PP particles (1–100 μm) were produced by cryomilling and embedded in a lactose/PEG matrix, then pressed into tablets (18 µg theoretical PP mass). The production process was optimized by varying (i) the size distribution of the matrix components and (ii) the mixer instrument. The materials obtained were characterized by thermogravimetric analysis to assess the homogeneity distribution of MPs with respect to PP mass in the individual tablets and their stability over a 4-month period. The most promising approach, with a homogenous mass of 19 μg (standard deviation of 4 μg), relative standard deviation of 19%, was further investigated for homogeneity by comparison with thermo-analytical mass determination methods, such as TED-GC/MS (thermal extraction desorption-gas chromatography/mass spectrometry) and Py-GC/MS (pyrolysis-gas chromatography-mass spectrometry), and for number-based characterization using micro-Raman spectroscopy. Material characterization was also examined using laser diffraction, scanning electron microscopy, and ATR-FTIR. Based on the results, the optimized processing protocol yields a PP RM suitable for quality control and method performance studies supporting standardization. KW - Microplastics KW - TED-GC/MS KW - Reference materials KW - Polypropylene PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653290 DO - https://doi.org/10.1007/s00216-025-06271-7 SN - 1618-2642 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Xunyu A1 - Riedel, Jens A1 - You, Yi T1 - Practical high-resolution spectroscopy with a spatial heterodyne spectrometer: Determination of instrumental function for lineshape recovery N2 - The spatial heterodyne spectrometer (SHS) is a well-recognized platform for its high resolving power in various use cases of spectroscopy. Same as other spectrometer topologies, the SHS, unfortunately, also suffers from classical challenges such as distorted lineshape due to the instrumental function. The goal of this work is to tackle this persisting issue through a simple numerical approach. With the inherent characteristics of an SHS interferogram, we report the direct extraction and determination of the instrumental function in its numerical representation from an SHS interferogram; this instrumental function was further used for spectral data processing that enables significant improvements in spectral resolution through deconvolution algorithms.Here, we systematically discuss the recognition of the embedded instrumental function among various ingredients within an interferogram. To verify the numerical approach, lithium was chosen as the model sample, resembling the use of SHS in an isotopic analysis application. Specifically, the resonance transition of lithium D-lines (2P1/2,3/2 ← 2S1/2) was selected to assess the performance of the spectral processing. With the spectral deconvolution, the spectral features that represent the 6Li and 7Li were nearly baseline-separated, allowing for the accurate measure of the isotopic abundance without external references or algorithm adjustments (e.g., curve fitting). KW - SHS KW - Isotopic analysis KW - High Resolution PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613401 DO - https://doi.org/10.1016/j.sab.2024.107053 SN - 0584-8547 VL - 221 SP - 1 EP - 5 PB - Elsevier AN - OPUS4-61340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinbeck, Christoph A1 - Jung, Nicole A1 - Bach, Felix A1 - Neumann, Steffen A1 - Herres-Pawlis, Sonja A1 - Liermann, Johannes A1 - Koepler, Oliver A1 - Bannwarth, Christoph A1 - Bender, Theo A1 - Bocklitz, Thomas A1 - Boehm, Franziska A1 - Bonatto Minella, Christian A1 - Biedermann, Frank A1 - Brack, Werner A1 - Cunha, Ricardo A1 - Czodrowski, Paul A1 - Eberl, Franziska A1 - Engel, Thomas A1 - Engstfeld, Albert A1 - Fischer, Tillmann G. A1 - Friedrich, Pascal A1 - Glorious, Frank A1 - Golub, Benjamin A1 - Grathwol, Christoph A1 - Haag, Rainer A1 - Hunold, Johannes A1 - Jacob, Christoph A1 - Johannsen, Jochen A1 - Jollife, John A1 - Kast, Stefan A1 - Kettner, Carsten A1 - Kuhn, Stefan A1 - Lanza, Giacomo A1 - Lisec, Jan A1 - Manolikakes, Georg A1 - Mata, Ricardo A1 - Meiler, Jens A1 - Müller, Matthias A1 - Müller-Pfefferkorn, Ralph A1 - Ortmeyer, Jochen A1 - Patterson, Wendy A1 - Pleiss, Jürgen A1 - Riedel, Annalisa A1 - Riedel, Jens A1 - Schatzschneider, Ulrich A1 - Schuster, Leonie A1 - Seeberger, Peter A1 - Seibert, Johann-Nikolaus A1 - Stadler, Peter A1 - Zeitler, Kirsten T1 - Proposal NFDI4Chem 2025-2030 In the National Research Data Infrastructure (NFDI) — Our Vision: All Chemists Publish FAIR Data N2 - The first funding period of NFDI4Chem established a robust foundation for research data management (RDM) in chemistry by promoting FAIR data principles and creating a cohesive infrastructure to capture well-annotated data early in the lab through electronic lab notebooks (ELNs) and making this data available in public repositories. Key achievements include standardised data formats and metadata, a federated repository environment, and improved data visibility and accessibility. Training programs and outreach have significantly increased awareness and adoption of best RDM practices. In the second funding period, the consortium aims to advance these achievements by consolidating this infrastructure, developing a model for its sustainable maintenance and operation, and fostering cultural change for its widespread adoption. Goals include ensuring seamless data workflows from laboratories to open repositories, enhancing interoperability, and supporting innovative research through AI-ready data. The work plan is organised into six task areas (TAs). TA1 (Management) provides leadership and supports all other TAs in achieving their objectives. TA2 (Smart Lab) aims to develop a fully digital research environment, including an ELN as a modular platform. This environment will support data collection, management, storage, analysis, and sharing. Integrating devices and external resources will enable seamless data transfer to repositories. TA3 (Repositories) will consolidate the repository ecosystem. The goal is to integrate repositories into a federated system for better accessibility and interoperability, ensuring long-term data availability and sustainability. TA4 (Metadata, Data Standards, and Publication Standards) focuses on developing and promoting new data and metadata standards in an international community process. This includes applying ontologies to create a semantic foundation for linking research data, making it machine-readable and enabling knowledge graphs. TA5 (Community and Training) is dedicated to fostering a cultural shift towards digital chemistry through continuous engagement, collecting requirements, and providing extensive training and support through workshops and open education resources. It will promote FAIR-compliant machine learning applications, embedding RDM into academic curricula to ensure future scientists are well-versed in these practices. TA6 (Synergies and Cross-Cutting Topics) aims to enhance collaboration across NFDI consortia and beyond. This includes developing ontologies, terminology services, the search service, and other cross-cutting solutions, integrating these developments into existing infrastructure, enabling interdisciplinary data harmonisation and fostering machine learning applications. KW - Research Data Management KW - FAIR KW - Chemistry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648540 DO - https://doi.org/10.3897/rio.11.e177037 SN - 2367-7163 VL - 11 SP - 1 EP - 100 PB - Pensoft Publishers AN - OPUS4-64854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Danischewski, Julia A1 - Molnar, Brian A1 - Riedel, Jens A1 - Shelley, Jacob T1 - Manipulation of Gaseous Ions with Acoustic Fields at Atmospheric Pressure N2 - The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions (“nodes”) while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases. KW - Ion mobility spectrometry KW - Acoustic KW - Mass spectrometry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600704 DO - https://doi.org/10.1021/jacs.4c01224 SP - 1 EP - 6 PB - ACS Publications AN - OPUS4-60070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. A. T1 - Laser Ablation Secondary Electrospray Ionization for In Situ Mass Spectrometric Interrogation of Acoustically-Levitated Droplets N2 - The composition of acoustically levitated droplets was probed by a novel combination of mid-IR laser evaporation and subsequent postionization via secondary electrospray ionization. The combination of microliter samples and subnanoliter sampling provided time-resolved interrogation of droplets and allowed for a kinetic investigation of the laser-induced release of the analyte, which was found to strongly depend on the analytes. The observed substancespecific delayed release of the analytes permitted baseline-separated discrimination of the analytes, ideal for the study of complex samples. The additionally applied postionization scheme was found to enable efficient detection of small volatile compounds as well as peptides. The detection of small molecules and peptides occurred under very different sampling geometries, pointing to two distinct underlying ionization mechanisms. Overall, our results suggest that the experimental setup presented in this study can serve as a widely applicable platform to study chemical reactions in acoustically levitated droplets as model reactors. KW - Acoustic levitation KW - Mass spectrometry KW - Electrospray KW - Laser ablation PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c03800 SN - 0003-2700 VL - 2022 SP - 1 EP - 5 PB - ACS Publications CY - Washington AN - OPUS4-56531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xue, Boyang A1 - Wang, Zhangjun A1 - Zhu, Tao A1 - Gu, Yezhen A1 - Sun, Weihong A1 - Chen, Chao A1 - Li, Zhigang A1 - Riedel, Jens A1 - You, Yi T1 - High repetition-rate laser-induced breakdown spectroscopy combined with two-dimensional correlation method for analysis of sea-salt aerosols N2 - Laser-induced breakdown spectroscopy (LIBS) offers a tantalizing glimpse into real-time, on-the-spot aerosol analysis. Yet, the reliance on traditional lasers, with their limitations in energy and frequency, hampers optimal sample handling, dissociation, and excitation. To address those challenges, we propose a novel tactic: utilize a high repetition-rate (rep.-rate) laser with low pulse energy in combination with the two-dimensional correlation (2D-corr.) technique for sea-salt aerosols analyses. By examining the emission patterns from both the laser pulse train and individual pulses, we recognize distinctive analyte-specific rep.-rate responses, which allowed spectral reconstruction of analytes, avoiding background interferences. This discovery enabled the rep.-rate modulation for a 2D-corr. spectroscopy workflow. Consequently, we successfully differentiated between particle-related and air-species-related spectral components, obviating expensive spectrometers or intensified image detectors. For instance, the Na I at 589 nm stemming from aerosols exhibited an entirely different correlation contribution compared to O I at 777 nm, resulting in reconstructed clean aerosol-spectra without spectral peaks originated from air species. This 2D-corr. aerosol LIBS approach shows promising analytical potential streamlining aerosol particle analysis. KW - LIBS KW - Aerosol PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613392 DO - https://doi.org/10.1016/j.sab.2024.107048 SN - 0584-8547 VL - 221 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-61339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Xunyu A1 - Riedel, Jens A1 - You, Yi T1 - Spectrally resolved lithium isotope quantification through high-resolution spatial heterodyne spectrometry N2 - Isotope ratio determination of lithium is increasingly important in fields ranging from geochemistry to battery diagnostics. While mass spectrometry remains the gold standard, it is costly, cumbersome, and incompatible with portable or inline implementations. Optical emission spectroscopy presents an appealing alternative. However, it is traditionally limited by insufficient spectral resolution or resolving power to separate lithium isotope emissions due to their generalized designs for a wide spectral range; this often requires overly complicated algorithms to overcome the instrumental drawbacks. (79) Results Here, we report a high-resolution optical method for lithium isotope quantification using a custom-built spatial heterodyne spectrometer (SHS) combined with a reduced-pressure glow discharge source. This configuration yielded a resolving power of 189,000 and enabled baseline resolution of lithium d-line emission features even without the need for preliminary data processing. Despite the inherent low sensitivity of SHS, a detection limit of 30 pmol was achieved using a standard industrial camera. To improve quantitative accuracy, we introduced a deconvolution-based spectral lineshape recovery technique alongside a bootstrapping-based error propagation strategy. These methods facilitated robust isotope ratio calibration using both peak-height and peak-area metrics. The SHS platform additionally enabled the determination of relative transition probabilities, suggesting the feasibility of calibration-free operation. This work demonstrates the practical viability of SHS for high-specificity, high-resolution lithium isotope analysis. The approach is compact, potentially field-deployable, and adaptable to other elements with optically resolvable isotope shifts, offering a route toward accessible and calibration-free optical isotopic analyses. KW - SHS KW - Isotope KW - High-resolution spectroscopy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635139 DO - https://doi.org/10.1016/j.aca.2025.344329 SN - 1873-4324 VL - 1368 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohan, M. A1 - Prochazka, D. A1 - You, Yi A1 - Riedel, Jens A1 - Gornushkin, Igor A1 - Rocnakova, I. A1 - Papula, M. A1 - Porízka, P. A1 - Kaizer, J. T1 - Investigating plasma morphology at material boundaries under varying ambient pressures N2 - Laser-Induced Breakdown Spectroscopy (LIBS) is a widely used technique for elemental analysis. The analysis of the obtained LIBS spectra generally assumes plasma homogeneity. However, using focused laser beams for interrogation, LIBS probes materials on the microscale and is, thus, prone to artefacts from sample heterogeneities on the micrometer scale. An ablation at a material boundary of two matrices may result in a significant inhomogeneity in the plasma plume, which can severely impact the accuracy of quantitative analysis. Since this propagation of the surface morphology into the plasma plume is driven by the plasma expansion, its final impact is strongly pressure dependent. This study examines the influence of varying ambient pressures (7–1000 mbar) on plasma morphology, spectral characteristics, and key plasma properties such as electron number density at a well-defined Cu–Sn boundary, in comparison with the results obtained using homogeneous alloys. Several approaches of plasma imaging with bandpass filters, spectroscopy, and Radon transform-based 3D reconstruction were employed to analyze elemental distribution, signal-to-noise (SNR) and signal-to-background (SBR) ratios, as well as electron number densities. The 3D reconstructions revealed a pronounced plasma asymmetry for the ablation at the material boundary, in contrast to the near-axial symmetry observed for the ablation of homogeneous alloys. At lower pressures, this distinct elemental separation in plasma persisted, while higher pressures led to an increased collisional mixing and homogenization. SNR and SBR were consistently lower for ablation at the boundary compared to homogeneous samples. These findings highlight how boundary ablation contributes to plasma inhomogeneities in LIBS analysis of heterogeneous materials and emphasize the need to account for these effects when using LIBS for elemental mapping of fine heterogeneous structures. KW - Laser-induced breakdown spectroscopy KW - Plasma inhomogeneity KW - Plasma tomography KW - Radon transform KW - Material boundaries KW - Ambient pressure effects PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634777 DO - https://doi.org/10.1016/j.talanta.2025.128377 SN - 1873-3573 VL - 295 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Xue, Boyang A1 - Riedel, Jens T1 - Enhancement of LIBS plasma in air with organic solvent vapors N2 - Laser-induced breakdown spectroscopy (LIBS) offers versatile, field-deployable elemental analysis; however, compact, high-repetition-rate nanosecond laser systems typically face constraints in power consumption and size, often compromising emission intensity and thus analytical performance. We demonstrate a significant improvement in LIBS signals through the controlled introduction of common organic solvent vapors into a sheath gas, with a diode-pumped solid-state laser (1064 nm, 2–28 kHz repetition rate, 450–600-μJ pulse energy). Optical and acoustic diagnostics reveal up to ca. 40-fold enhancement of the N II emission line at 567 nm when ambient air serves as the analyte. Maximal enhancement occurs at intermediate repetition rates of ca. 15 kHz, particularly at pulse energies approaching the optical breakdown threshold; this observation suggests a viable strategy for operating LIBS at lower pulse energies and higher repetition rates. Enhancement effects scale jointly with both vapor pressure and ionization energy of the organic species, with acetone and toluene markedly outperforming methanol and isopropanol. These findings provide a rational foundation for significantly improving the analytical performance of portable LIBS instruments without exceeding platform-specific constraints. KW - LIBS PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653758 DO - https://doi.org/10.1016/j.sab.2025.107309 SN - 0584-8547 VL - 236 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-65375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wittwer, Philipp A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Feldmann, Ines A1 - Simon, Franz-Georg T1 - Less Is More: Influence of Cross-Linking Agent Concentration on PFOS Adsorption in Chitosan N2 - As a result of the continuous use of persistent per- and polyfluoroalkyl substances (PFAS), e.g., in aviation firefighting foams, contamination with PFAS has been found in soil, groundwater, and surface water around thousands of industrial and military installations. Due to their harmful (environmental) potential, further dispersion in the environment needs to be stopped, which can be achieved by appropriate absorption materials. In this work, the influence of the cross-linking agent epichlorohydrin (ECH) concentration on the perfluorooctanesulfonic acid (PFOS) adsorption capacity of chitosan gel was investigated. It was found that higher ECH concentration during the cross-linking step decreases the PFOS adsorption capacity of the cross-linked chitosan gel from 0% to 4% ECH solution by about 15%. Using a concentration of 1%, ECH resulted still in an acid-stable material, and a maximum PFOS loading capacity of 4.04 mmol/g was obtained, one of the highest described in the literature. Furthermore, we used a rapid small-scale column test to compare the PFOS adsorption capacity of chitosan and activated carbon, each in both milled and unmilled form. Unmilled chitosan showed the highest PFOS adsorption capacity considering adsorption material dry masses (>0.9 and <0.4 mmol/g for both types of chitosan and activated carbon, respectively). Milled activated carbon proved to be the better adsorption material, considering the fixed volume of the adsorber (>99.9% PFOS adsorbed). Overall, the cross-linking agent concentration in chitosan is a crucial factor influencing its PFOS absorption potential. Our results feature cross-linked chitosan as an effective economic and ecologic alternative for PFOS adsorption in aqueous solutions. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618406 DO - https://doi.org/10.3390/app142311145 VL - 14 IS - 23 SP - 1 EP - 13 PB - MDPI AN - OPUS4-61840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Urban, Klaus A1 - Ackerhans, C. A1 - Gorbushina, Anna T1 - Analysis of Carbon and Nitrogen from Atmospheric Sources by Bulk Deposition Sampling at various locations in Germany N2 - Atmospheric deposition of particulate matter is an important indicator of air pollution and a significant factor in material surface fouling. The elemental composition of this nutrient-containing dust depends largely on the exposure region and time as well as on climate. Therefore, in this paper we report an analysis of atmospheric pollutions with a self-made low-cost bulk deposition sampler directed at sampling deposition via air transport and rainfall. We used the device in diverse environments - thus comparing an urban region, an area surrounded by forest and an area mainly dominated by agriculture. The total organic carbon (TOC) and total nitrogen (TN) amounts were selected as indicator parameters and analyzed in a biweekly rhythm for three and a half and two years, respectively. The TOC value responded to particulate matter in the urban area, especially significant were the influences of the New Year's firework in urban and pollen in the rural forest area. In contrast, the TN value was more under the influence of the nitrogen emissions in the agriculture-dominated area. However, the TN value did not correlate with the NOx values in the urban area because the atmospheric nitrogen emissions in the city might originate from various emission sources. Summarizing, the TOC and TN values of the self-made low-cost bulk deposition sampler were in good agreement with environmental events of their immediate surrounding. Moreover, the selected containers and sampling procedures are universally applicable to monitor and analyze organic as well as inorganic parameters (e.g. metal ions) of atmospheric deposition. KW - Passive sampling KW - Biomonitoring KW - Air Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609373 DO - https://doi.org/10.1016/j.envadv.2024.100583 SN - 2666-7657 VL - 17 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, C. A1 - Inutan, E. D. A1 - Chen, J. L. A1 - Mukeku, M. M. A1 - Weidner, Steffen A1 - Trimpin, S. A1 - Ni, C.-K. T1 - Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory N2 - Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices. KW - Ionization KW - MALDI-TOF MS KW - Mechanism PY - 2021 DO - https://doi.org/10.1002/rcm.8382 VL - 35 IS - 51 SP - e8382 PB - John Wiley & Sons AN - OPUS4-49209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -