TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485689 DO - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Celina, M. A1 - Braun, Ulrike T1 - Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products N2 - The TED-GC-MS analysis is a two-step method. A sample is first decomposed in a thermogravimetric analyzer (TGA) and the gaseous decomposition products are then trapped on a solid-phase adsorber. Subsequently, the solid-phase adsorber is analyzed with thermal desorption gas chromatography mass spectrometry (TDU-GC-MS). This method is ideally suited for the analysis of polymers and their degradation processes. Here, a new entirely automated System is introduced which enables high sample throughput and reproducible automated fractioned collection of decomposition products. Strengths and limitations of the system configuration are elaborated via three examples focused on practical challenges in materials analysis and identification: i) separate analysis of the components of a wood-plastic-composite material, ii) quantitative determination of weight concentration of the constituents of a polymer blend and iii) quantitative analysis of model samples of microplastics in suspended particulate matter. KW - Thermal extraction-desorption gas chromatography mass spectrometry KW - Analysis KW - Polymers KW - Microplastics KW - Automation PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.033 VL - 1592 SP - 133 EP - 142 PB - Elsevier CY - Amsterdam AN - OPUS4-48287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Paz, B. A1 - Völling, E. T1 - On the ore provenance of the Trojan silver artefacts N2 - Lead isotopes are a well-established tool to trace the geographic origin of samples and artefacts in archaeology and geochemistry. In archaeology, lead isotopes are often applied to gain information on the provenance of the used ores especially in lead and silver artefacts. The assignment of a specific and unambiguous provenance in most cases is not possible or at least hindered due to several limitations such as ore deposits overlapping in their lead isotopic composition, a large spread within one ore deposit or a missing overlap with known mining sites. Such difficult cases can only be solved by using information from sources being independent of the isotope data. This information can be of chemical nature such as concentrations of key elements or they can be of archaeological nature such as cultural or trade route information.Within this study, we combined lead isotope data of ores and artefacts with silver mass fractions in the ore deposits, Au/Ag-ratios in ores and artefacts and finally archaeological Information on the cultural context in the Mediterranean and Anatolian Region. This approach enabled us to significantly reduce the potential number of mining regions. Finally, the potential sources could be narrowed down to the three remaining locations the Central Taurus, Arap Dağ and the Eastern Troad. Beneath these three locations, the Central Taurus shows the highest probability for the geographic origin of the galena which has been used to create the Trojan silver artefacts. KW - Trojan silver artefacts KW - Priam's treasure KW - Lead isotope composition KW - Central Taurus KW - Ore provenance KW - Elemental composition PY - 2019 DO - https://doi.org/10.1007/s12520-018-0756-x SN - 1866-9557 SN - 1866-9565 VL - 11 IS - 7 SP - 3267 EP - 3277 PB - Springer Verlag AN - OPUS4-48272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Koch, Matthias A1 - Wise, S. A. A1 - Panne, Ulrich T1 - Fifteenth international symposium on biological and environmental reference materials (BERM-15) N2 - The 15th International Symposium on Biological and Environmental Reference Materials (BERM-15), organized by BAM, took place at in Berlin in September 2018. An overview on main topics of the conference is given. KW - BERM KW - Reference materials PY - 2019 DO - https://doi.org/10.1007/s00769-019-01377-9 SN - 1432-0517 SN - 0949-1775 VL - 24 IS - 3 SP - 249 EP - 250 PB - Springer Verlag AN - OPUS4-48203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geilert, Sonja A1 - Vogl, Jochen A1 - Rosner, M. A1 - Eichert, T. T1 - Boron isotope variability related to boron speciation (change during uptake and transport) in bell pepper plants and SI traceable n(11B)/n(10B) ratios for plant reference materials N2 - Rationale: Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intra‐plant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels. Methods: A fully validated analytical procedure based on multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS), sample decomposition and B Matrix separation was applied to study B isotope fractionation. The Validation was accomplished by establishing a complete uncertainty budget and by applying reference materials, yielding expanded measurement uncertainties of 0.8‰ for pure boric acid solutions and ≤1.5‰ for processed samples. With this validated procedure SI traceable B isotope amount ratios were determined in plant reference materials for the first time. Results: The B isotope compositions of Irrigation water and bell pepper samples suggest passive diffusion of the heavy 11B isotope into the roots during low to high B concentrations while uptake of the light 10B isotope was promoted during B depletion, probably by active processes. A systematic enrichment of the heavy 11B isotope in higher located plant parts was observed (average Δ11Bleaf‐roots = 20.3 ± 2.8‰ (1 SD)), possibly by a facilitated transport of the heavy 11B isotope to growing Meristems by B transporters. Conclusions: The B isotopes can be used to identify plant metabolism in Response to the B concentration in the irrigation water and during intra‐plant B transfer. The large B isotope fractionation within the plants demonstrates the importance of biological B cycling for the global B cycle. KW - isotope fractionation KW - boron KW - delta value KW - metabolism KW - bell pepper KW - SI traceability KW - measurement uncertainty PY - 2019 DO - https://doi.org/10.1002/rcm.8455 SN - 1097-0231 SN - 0951-4198 VL - 33 IS - 13 SP - 1137 EP - 1147 PB - John Wiley & Sons Ltd. AN - OPUS4-48213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - Döring, A.-K. A1 - Meermann, Björn T1 - Development of complementary CE-MS methods for speciation analysis of pyrithione-based antifouling agents N2 - In the recent decade, metal pyrithione complexes have become important biocides for antifouling purposes in shipping. The analysis of metal pyrithione complexes and their degradation products/species in environmental samples is challenging because they exhibit fast UV degradation, transmetalation, and ligand substitution and are known to be prone to spontaneous species transformation within a chromatographic system. The environmental properties of the pyrithione species, e.g., toxicity to target and non-target organisms, are differing strongly, and it is therefore inevitable to identify as well as quantify all species separately. To cope with the separation of metal pyrithione species with minimum species transformation during analysis, a capillary electrophoresis (CE)–based method was developed. The hyphenation of CE with selective electrospray ionization- and inductively coupled plasma–mass spectrometry (ESI-, ICP-MS) provided complementary molecular and elemental information for the identification and quantification of pyrithione species. To study speciation of pyrithiones, a leaching experiment of several commercial antifouling paints containing zinc pyrithione in ultrapure and river water was conducted. Only the two species pyrithione (HPT) and dipyrithione ((PT)2) were found in the leaching media, in concentrations between 0.086 and 2.4 μM (HPT) and between 0.062 and 0.59 μM ((PT)2), depending on the paint and leaching medium. The limits of detection were 20 nM (HPT) and 10 nM ((PT)2). The results show that complementary CE-MS is a suitable tool for mechanistical studies concerning species transformation (e.g., degradation) and the identification of target species of metal pyrithione complexes in real surface water matrices, laying the ground for future environmental studies. KW - Complementary MS KW - Environmental speciation KW - Capillary electrophoresis-mass spectrometry KW - Antifouling biocides PY - 2019 DO - https://doi.org/10.1007/s00216-019-02094-5 SN - 1618-2642 VL - 411 IS - 27 SP - 7261 EP - 7272 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-48962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Borovinskaya, O. A1 - Tourniaire, G. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Arraying of single cells for quantitative high throughput laser ablation ICP-TOF-MS N2 - Arraying of single cells for mass spectrometric analysis is a considerable bioanalytical challenge. In this study, we employ a novel single cell arraying technology for quantitative analysis and isotopic fingerprinting by laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). The single cell arraying approach is based on a piezo-acoustic microarrayer with software for automated optical detection of cells within the piezo dispense capillary (PDC) prior to arraying. Using optimized parameters, single cell occupancy of >99%, high throughput (up to 550 cells per hour), and a high cell recovery of >66% is achieved. LA-ICP-TOF-MS is employed to detect naturally occurring isotopes in the whole mass range as fingerprints of individual cells. Moreover, precise quantitative determination of metal-containing cell dyes is possible down to contents of ∼100 ag using calibration standards which were produced using the same arrayer. KW - Laser ablation KW - Cell KW - Array KW - ICP-MS PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00198 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11520 EP - 11528 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lopez-Serrano Oliver, Ana A1 - Haase, A. A1 - Peddinghaus, A. A1 - Wittke, D. A1 - Jakubowski, Norbert A1 - Luch, A. A1 - Grützkau, A. A1 - Baumgart, S. T1 - Mass cytometry enabling absolute and fast quantification of silver nanoparticle uptake at the single cell level N2 - In the last decades, significant efforts have been made to investigate possible cytotoxic effects of metallic nanoparticles (NPs). Methodologies enabling precise information regarding uptake and intracellular distribution of NPs at the single cell level remain to be established. Mass cytometry (MC) has been developed for high-dimensional single cell analyses and is a promising tool to quantify NP−cell interactions. Here, we aim to establish a new MC-based quantification procedure to receive absolute numbers of NPs per single cell by using a calibration that considers the specific transmission efficiency (TE) of suspended NPs. The current MC-quantification strategy accept TE values of complementary metal solutions. In this study, we demonstrate the different transmission behavior of 50 nm silver NPs (AgNP) and silver nitrate solution. We have used identical AgNPs for calibration as for in vitro-differentiated macrophages (THP-1 cell line) in a time- and dose-dependent manner. Our quantification relies on silver intensities measuring AgNPs in the same detection mode as the cells. Results were comparable with the TE quantification strategy using AgNPs but differed when using ionic silver. Furthermore, intact and digested cell aliquots were measured to investigate the impact of MC sample processing on the amount of AgNPs/cell. Taken together, we have provided a MC-specific calibration procedure to precisely calculate absolute numbers of NPs per single cell. Combined with its unique feature of multiplexing up to 50 parameters, MC provides much more information on the single cell level than single cell-inductively coupled plasma mass spectrometry (SC-ICP-MS) and, therefore, offers new opportunities in nanotoxicology. KW - ICP-MS KW - Nanoparticle KW - Cell KW - SC-ICP-MS KW - Mass cytometry PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b01870 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11514 EP - 11519 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Knizia, Christian A1 - Kuhne, Maren A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - LC–ELISA as a contribution to the assessment of matrix effects with environmental water samples in an immunoassay for estrone (E1) N2 - Estrone (E1), a metabolite of the estrogenic hormones 17β-estradiol (β-E2) and 17α-estradiol (α-E2), is itself a potent estrogen which can have a significant impact on the hormonal balance. Due to ist high potential for adverse effects on human health and aquatic life even at pg/L to ng/L levels, its appearance in water should be monitored. E1 has also been considered a marker substance for the presence of other estrogens. This study presents a newly developed direct competitive enzymelinked immunosorbent assay (ELISA) for quantification of E1 in environmental water samples using new monoclonal antibodies. The quantification range of the ELISA is 0.15 μg/L to 8.7 μg/L E1, and the limit of detection is around 60 ng/L for not pre-concentrated water samples. A pre-concentration step after careful selection of suitable phases for SPE was developed, too. The influence of organic solvents and natural organic matter on the ELISA was assessed. The high selectivity of the monoclonal antibody was demonstrated by determining the cross-reactivity against 20 structurally related compounds. For the assessment of matrix effects, a concept (“LC–ELISA”) is thoroughly exploited, i.e., separating complex samples by HPLC into 0.3 min fractions and determination of the apparent E1 concentration. Furthermore, fractions with interferences for nontarget/suspected-target analysis can be assigned. A dilution approach was applied to distinguish between specific interferences (cross-reactants) and non-specific interferences (matrix effects). In the determination of 18 environmental samples, a good agreement of the E1 concentration in the respective fractions was obtained with mean recoveries of 103 % to 132 % comparing ELISA to LC–MS/MS. KW - Validierung KW - Immunoassay KW - Matrixeffekte KW - Abwasser KW - Oberflächenwasser KW - ELISA KW - LC-MS/MS KW - Hormone KW - Endokrine Disruptoren PY - 2018 DO - https://doi.org/10.1007/s00769-018-1351-7 SN - 1432-0517 SN - 0949-1775 VL - 23 IS - 6 SP - 349 EP - 364 PB - Springer CY - Heidelberg AN - OPUS4-46891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -