TY - JOUR A1 - García Fernández, J. A1 - Sánchez-González, C. A1 - Bettmer, J. A1 - Llopi, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Montes-Bayón, M. T1 - Quantitative assessment of the metabolic products of iron oxide nanoparticles to be used as iron supplements in cell cultures N2 - Iron nanoparticles (NPs) metabolism is directly associated to human health due to their use as anemia treatment and should be studied in detail in cells. Here we present a speciation strategy for the determination of the metabolic products of iron oxide nanoparticles coated by tartaric and adipic acids in enterocytes-like cell models (Caco-2 and HT-29). Such methodology is based on the use of SDS-modified reversed phase high performance liquid chromatography (HPLC) separation using inductively coupled plasma-mass spectrometry (ICP-MS) as Fe selective detector. Post-column isotope dilution analysis is used as quantification tool by adding Fe-57 as isotopically enriched standard. To assess the separation capability of the method, two different iron nanostructures: iron sucrose nanoparticles -Venofer®- used as model suspension and iron tartrate/adipate-modified nanoparticles, both of about 4 nm (core size) were evaluated. The two nanostructures were injected into the system showing good peak profiles and quantitative elution recoveries (>80%) in both cases. In addition, both nanoparticulate fractions could be based-line separated from ionic iron species, which needed to be complexed with 1mM citrate to elute from the column. Exposed cells up to 0.5mM of iron tartrate/adipate-modified nanoparticles were specifically treated to extract the internalized NPs and the extracts examined using the proposed strategy. The obtained results revealed the presence of three different fractions corresponding to nanoparticle aggregates, dispersed nanoparticles and soluble iron respectively in a single chromatographic run. Quantitative experiments (column recoveries ranging from 60 to 80%) revealed the presence of the majority of the Fe in the nanoparticulated form (>75%) by summing up the dispersed and aggregate particles. Such experiments point out the high uptake and low solubilization rate of the tartrate/adipate NPs making these structures highly suitable as Fe supplements in oral anemia treatments. KW - Fe nanoparticles metabolism KW - Cells KW - HPLC-ICP-MS KW - Species-unspecific on-line isotope dilution PY - 2018 DO - https://doi.org/10.1016/j.aca.2018.08.003 SN - 0003-2670 VL - 1039 SP - 24 EP - 30 PB - Elsevier CY - Amsterdam AN - OPUS4-46817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noeller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Provenance studies KW - Micro-XRF KW - Lapis lazuli KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480048 DO - https://doi.org/10.17265/2328-2193/2019.02.003 VL - 7 IS - 2 SP - 57 EP - 69 PB - David Publishing AN - OPUS4-48004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Lisec, Jan A1 - Swinnen, J. V. A1 - Zaidi, N. T1 - Lipid metabolism in cancer cells under metabolic stress N2 - Cancer cells are often exposed to a metabolically challenging environment with scarce availability of oxygen and nutrients. This metabolic stress leads to changes in the balance between the endogenous synthesis and exogenous uptake of fatty acids, which are needed by cells for membrane biogenesis, energy production and protein modification. Alterations in lipid metabolism and, consequently, lipid composition have important therapeutic implications, as they affect the survival, membrane dynamics and therapy response of cancer cells. In this article, we provide an overview of recent insights into the regulation of lipid metabolism in cancer cells under metabolic stress and discuss how this metabolic adaptation helps cancer cells thrive in a harsh tumour microenvironment. KW - Mass-Spectrometry KW - Lipidomics KW - Lipid metabolism KW - Cancer cells PY - 2019 DO - https://doi.org/10.1038/s41416-019-0451-4 VL - 120 IS - 12 SP - 1090 EP - 1098 PB - Nature AN - OPUS4-48005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Inutan, E. A1 - Karki, S. A1 - Elia, E. A1 - Zhang, W. A1 - Weidner, Steffen A1 - Marshall, D. A1 - Hoang, K. A1 - Lee, C. A1 - Davis, E. A1 - Smith, V. A1 - Meher, A. A1 - Cornejo, M. A1 - Auner, G. A1 - McEwen, C. T1 - Fundamental studies of new ionization technologies and insights from IMS-MS N2 - Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this Special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original Environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened. KW - Inlet ionization KW - Vacuum ionization KW - Matrices KW - Fundamentals KW - Ion mobility PY - 2019 DO - https://doi.org/10.1007/s13361-019-02194-7 SN - 1044-0305 SN - 1879-1123 VL - 30 IS - 6 SP - 1133 EP - 1147 PB - Springer AN - OPUS4-48011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Lehnik-Habrink, Petra A1 - Bandow, Nicole A1 - Sauer, Andreas T1 - Validation of European horizontal methods for the analysis of PAH, PCB and dioxins in sludge, treated biowaste and soil N2 - Draft standards for the determination of organic pollutants in the solid matter of environmental matrices such as sludge, treated biowaste and soil have been basically developed in the framework of the European standardization project HORIZONTAL. A research project financed by the German Federal Environment Agency was initiated to finalize some of these CEN standard drafts, since fully validated standard procedures are crucial for the evaluation of their reliability in the context of implementation in legislation on environmental health. Approach: Appropriate test materials (< 2mm particle size) were prepared and homogenized from contaminated soils, sludge and treated biowaste containing polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, furans and dioxin-like-PCB and served, along with reference solutions, as the basis for international interlaboratory comparisons. Performance data of three analytical standard procedures were obtained by the statistical evaluation of results received from 11 to 29 participants per test material. Results: The overall variation coefficients of reproducibility (between-lab standard deviations) for the sum parameters were roughly between 10 and 35 %. The variation coefficients of repeatability (within-lab standard deviations) range between 3 % and 8 % and show no trend considering the substance groups or matrices. The highest coefficients of reproducibility were found for the analysis of PAHs, which were between 26 and 35 %, depending on the matrix, whereas 7-17 % reproducibility was observed for toxicity equivalents (TEQ) comprising dioxins, furans and dl-PCB. Conclusions: Overall, the results confirm that the procedures described in the Technical Specifications are fit for purpose for all three matrices and that the feasibility of the HORIZONTAL approach, to cover several matrices with one standard per analyte, was thereby proven. KW - Standardization KW - Analytical methods KW - Organic contaminants KW - Validation trial KW - Interlaboratory comparison PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479914 DO - https://doi.org/10.1186/s12302-019-0211-3 SN - 2190-4715 VL - 31 SP - 29, 1 EP - 10 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Serrano Oliver, Ana A1 - Baumgart, S. A1 - Bremser, Wolfram A1 - Flemig, Sabine A1 - Wittke, D. A1 - Grützkau, A. A1 - Luch, A. A1 - Haase, A. A1 - Jakubowski, Norbert T1 - Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode N2 - The impact of nanoparticles, NPs, at the single cell level has become a major field of toxicological research and different analytical methodologies are being investigated to obtain biological and toxicological information to better understand the mechanisms of cell–NP interactions. Here, inductively coupled plasma mass spectrometry in the single cell measurement mode (SC-ICP-MS) is proposed to study the uptake of silver NPs, AgNPs, with a diameter of 50 nm by human THP-1 monocytes in a proof-ofprinciple experiment. The main operating parameters of SC-ICP-MS have been optimized and applied for subsequent quantitative analysis of AgNPs to determine the number of particles in individual cells using AgNP suspensions for calibration. THP-1 cells were incubated with AgNP suspensions with concentrations of 0.1 and 1 µg/mL for 4 and 24 hours. The results reveal that the AgNP uptake by THP-1 monocytes is minimal at the lower dose of 0.1 µg/mL (roughly 1 AgNP per cell was determined), whereas a large cell-to-cell variance dependent on the exposure time is observed for a 10 times higher concentration (roughly 7 AgNPs per cell). The method was further applied to monitor the AgNP uptake by THP-1 cells differentiated macrophages incubated at the same AgNP concentration levels and exposure times demonstrating a much higher AgNP uptake (roughly from 9 to 45 AgNPs per cell) that was dependent on exposure concentration and remained constant over time. The results have been compared and validated by sample digestion followed by ICP-MS analysis as well as with other alternative promising techniques providing single cell analysis. KW - Silbernanopartikel KW - ICP-MS KW - Einzelzellanalyse PY - 2018 DO - https://doi.org/10.1039/C7JA00395A SN - 0267-9477 VL - 33 IS - 7 SP - 1256 EP - 1263 PB - Royal Society of Chemistry CY - London AN - OPUS4-45473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Moldenhauer, Daniel A1 - Byrne, L. A1 - Haase, H. A1 - Resch-Genger, Ute A1 - Koch, Matthias T1 - Complexes of the mycotoxins citrinin and ochratoxin A with aluminum ions and their spectroscopic properties N2 - The sensitive detection of the mycotoxin citrinin (CIT) utilizing ist fluorescence requires approaches to enhance the emission. In this respect, we studied the complexation of CIT and ochratoxin A (OTA) with Al3+ in methanol using absorption and fluorescence spectroscopy. In this context, an isocratic high performance liquid chromatography (HPLC) method using a polymer column and a fluorescence detector was also developed that enables the separation of the metal ion complexes from the free ligands and non-complexed Al3+. CIT and OTA showed distinct changes in their absorption and fluorescence properties upon Al3+-coordination, and the fluorescence of CIT was considerably enhanced. Analysis of the photometrically assessed titration of CIT and OTA with Al3+ using the Job plot method revealed 1:2 and 1:1 stoichiometries for the Al3+ complexes of CIT (Al:CIT) and OTA (Al:OTA), respectively. In the case of CIT, only one -diketone moiety participates in Al3+ coordination. These findings can be elegantly exploited for signal amplification and provide the base to reduce the limit of detection for CIT quantification by about an order of magnitude, as revealed by HPLC measurements using a fluorescence detector. KW - Complexation KW - Aluminum KW - Fluorescence KW - Job plot KW - HPLC-DAD/FLD PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470502 DO - https://doi.org/10.3390/toxins10120538 SN - 2072-6651 VL - 10 IS - 12 SP - 538, 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-47050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tvrdonova, M. A1 - Vlcnovska, M. A1 - Pompeiano Vanickova, L. A1 - Kanicky, V. A1 - Adam, V. A1 - Ascher, Lena A1 - Jakubowski, Norbert A1 - Vaculovicova, M. A1 - Vaculovic, T. T1 - Gold nanoparticles as labels for immunochemical analysis using laser ablation inductively coupled plasma mass spectrometry N2 - In this paper, we describe the labelling of antibodies by gold nanoparticles (AuNPs) with diameters of 10 and 60 nm with detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Additionally, the AuNPs labelling strategy is compared with commercially available labelling reagents based on MeCAT (metal coded affinity tagging). Proof of principle experiments based on dot blot experiments were performed. The two labelling methods investigated were compared by sensitivity and limit of detection (LOD). The absolute LODs achieved were in the range of tens of picograms for AuNP labelling compared to a few hundred picograms by the MeCAT labelling. KW - Nanoparticle KW - LA-ICP-MS KW - Labeling PY - 2019 DO - https://doi.org/10.1007/s00216-018-1300-7 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 3 SP - 559 EP - 564 PB - Springer-Verlag GmbH CY - Berlin, Heidelberg AN - OPUS4-47093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Schwinn, M. A1 - Kuhlmeier, K. A1 - Büchel, C. A1 - Meermann, Björn T1 - Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis N2 - The most challenging part in performing a single cell ICP-MS (sc-ICP-MS) approach is the sample preparation, in particular the reduction of the ionic background. This step is, in many cases, time-consuming and required for each sample separately. Furthermore, sc-ICP-MS measurements are mostly carried out "manually", given the fact that present systems are not allowing for an automated change of samples. Thus, within this work, we developed an approach based on a HPLC system coupled on-line with sc-ICP-MS via a set of switching valves as well as an in-line filter for automated cell washing. This set-up enables the ionic background removal as well as analysis of single cells completely automated without any manual sample pretreatment. Our approach was applied for the analysis of the single celled diatom species Cyclotella meneghiniana, a marine diatom species, on the basis of Mg24 and facilitates testing in 11 min per sample, requiring only around 10,000 cells in a volume of 10 µL and approx. 10 mL of a 5% MeOH/95% deionized water (v/v) mixture. Even at extremely saline culturing media concentrations (up to 1000 mg L-1 magnesium) our on-line approach worked sufficiently allowing for distinction of ionic and particulate fractions. Furthermore, a set of diatom samples was analyzed completely automated without the need for changing samples manually. So, utilizing this approach enables analyzing a high quantity of samples in a short time and therefore in future the investigation of ecotoxicological effects is simplified for example in terms of metal accumulation by taking biovariability into account. KW - Single cell-ICP-MS KW - Diatoms KW - Ecotoxicology testing KW - Automated system PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.045 SN - 1873-4324 VL - 1077 SP - 87 EP - 94 PB - Elsevier AN - OPUS4-48567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -