TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lintelmann, Jutta A1 - Franke, Raimo A1 - Artati, Anna A1 - Cecil, Alexander A1 - Broda, Frank A1 - Klawonn, Frank A1 - Erban, Alexander A1 - Kopka, Joachim A1 - Fuchs, Beate A1 - Sommer, Ulf A1 - Neumann-Schaal, Meina A1 - O'Connor, Gavin T1 - Analytical practices, use and needs of standard and reference materials in the German-speaking metabolomics community: results of an online survey N2 - Introduction Since the early 2000s, metabolomics has grown rapidly, becoming integral to fields like life sciences, health, and environmental research. This expansion has led to the formation of national and international societies, such as Germany’s DGMet, to tackle emerging challenges. One of DGMet’s goals is to improve measurement quality by assessing community needs for harmonization and standardization. A recent survey within the German-speaking community aimed to identify current practices and gaps in the use of chemical standards and reference materials, to guide future standardization efforts and collaborative initiatives. Methods An online survey was conducted between June 2023 and April 2024. The survey consisted of 38 key questions and was open to research institutions from Germany, Austria, and Switzerland. Results The survey was accessed by 68 laboratories, with 23 institutes providing complete or partial responses (34% response rate), which is comparable to rates reported in similar surveys within the metabolomics and lipidomics communities. Respondents were mainly experienced researchers from Germany, focusing mainly on health-related (“red”) metabolomics, as indicated by 78% of the respondents, followed by microbial (“grey”, 48%) and plant (“green”, 39%) metabolomics (multiple answers possible). The use of targeted methods was reported more frequently (91%) than that of non-targeted methods (78%), whereas metabolite fractions studied were equally split between polar, midpolar and lipid fractions (83% each). Human (74%), mouse (61%) and Arabidopsis (30%) were the most frequently studied organisms. Most participants used synthetic chemical standards for instrument qualification (83%), calibration (78%), and metabolite identification (74%), while matrix reference materials were mainly applied for quality control (52%) and method validation (44%). There was a strong demand for more standards, especially for metabolite identification and quantification, with cost being a major barrier, particularly for isotopically labelled standards and certified reference materials. Conclusions Valuable insights into the use of standards and reference materials within the German-speaking metabolomics community were obtained. Moving forward, the community should address critical gaps in metabolomics standardization. To achieve this, it must share its knowledge, articulate its needs clearly, and actively engage in joint efforts with national metrology institutes and international standardization initiatives. KW - Reference material KW - Chemical standard KW - Metabolomics KW - Mass spectrometry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647303 DO - https://doi.org/10.1007/s11306-025-02360-x VL - 21 IS - 6 SP - 1 EP - 11 PB - Springer-Nature CY - Heidelberg AN - OPUS4-64730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meiers, Emelie A1 - Scholl, Juliane A1 - Droas, Morten A1 - Vogel, Christian A1 - Leube, Peter A1 - Sommerfeld, Thomas A1 - Bagheri, A. A1 - Adam, Christian A1 - Seubert, A. A1 - Koch, Matthias T1 - Development and evaluation of analytical strategies for the monitoring of per- and polyfluoroalkyl substances from lithium-ion battery recycling materials N2 - Per- and polyfluoroalkyl substances (PFAS) are well-known as “forever chemicals” and persistent pollutants released by different anthropogenic sources. The potential release of PFAS from accumulating electronic waste and lithium-ion battery (LIB) recycling activities has gained increasing attention in the past years. This creates a need for analytical methods tailored for the determination of PFAS out of environmental matrices related to the named activities or directly out of the concerned materials. In this work, analytical strategies for the monitoring of PFAS in LIB recycling materials were explored for a group of legacy perfluoro sulfonic- and carbonic acids (PFSA and PFCA) and of fluorinated sulfonylimides suspected to be LIB electrolyte ingredients. These analytical strategies comprehend PFAS target approaches with a herein optimized liquid chromatography tandem mass spectrometry (LC–MS/MS) method equipped with a HILIC (hydrophilic interaction liquid chromatography) column in combination with the TOP (total oxidizable precursor) assay and an adapted sample preparation method for high-matrix LIB recycling materials. The validated target method was applied to a set of LIB recycling materials: end-of-life batteries, black masses from hydrometallurgical recycling, and gas absorption solutions from thermal treatment of black masses as part of the recycling procedure. Investigation results show that the LIB industry can be connected to the release of both “LIB”-PFAS, such as the target sulfonylimides, and “already-legacy” PFAS, like the PFSA and PFCA. Especially, the presence of trifluoroacetic acid (TFA) as an emerging pollutant in every investigated LIB material type underlines the threat of PFAS emissions from LIB waste and recycling activities. KW - Per- and polyfluoroalkyl substances (PFAS) KW - Battery PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647015 DO - https://doi.org/10.1007/s00216-025-06165-8 SN - 1618-2642 VL - 417 SP - 6567 EP - 6583 PB - Springer Science and Business Media LLC AN - OPUS4-64701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Diastereoselective synthesis of (±)-trichodiene and (±)-trichodiene-D3 as analytical standards for the on-site quantification of trichothecenes N2 - The ubiquitous Fusarium genus is responsible for the spoilage of vast amounts of cereals and fruits. Besides the economic damage, the danger to human and animal health by the concomitant exposure to mycotoxins represents a serious problem. A large number of Fusarium species produce a variety of different mycotoxins of which the class of trichothecenes are of particular importance due to their toxicity. Being identified as the common volatile precursor during the biosynthesis of trichothecenes, (−)-trichodiene (TD) is considered to be a biomarker for the respective mycotoxin content in food samples. We postulated that the development of a non-invasive, on-site GC-IMS method for the quantification of (−)-trichodiene supplemented with a stationary SIDA headspace GC-MS reference method would allow circumventing the laborious and expensive analyses of individual trichothecenes in large cereal samples. In this work we present the syntheses of the required native calibration standard and an isotope labeled (TD-D3) internal standard. KW - Mycotoxins KW - Volatile marker KW - Food analysis KW - Screening method KW - Mobile analysis PY - 2021 DO - https://doi.org/10.1039/d1ob01778k VL - 19 IS - 45 SP - 9872 EP - 9879 PB - RSC AN - OPUS4-53993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of aluminum current collector degradation in lithium-ion batteries using glow discharge optical emission spectrometry N2 - In this work, we employed glow discharge optical emission spectrometry (GD-OES) depth profiling as a fast and semi-quantitative method to investigate the aluminum (Al) current collector degradation in commercial lithium cobalt oxide (LCO) pouch cells with no Al2O3 pretreatment. After battery aging, a heterogeneous deposit was found on the surface of the cathode. Gray hotspot areas within an extensive pale white region were formed. Consistent with energy dispersive X-ray (EDX) analysis of micro-cross sections milled via targeted focused ion beam (FIB), an Al-containing layer of approximately 3 µm can be observed using GD-OES. We attribute one main cause of this layer is the degradation of the Al current collector. The nonuniform growth of this layer was investigated by performing GD-OES depth profiling at different in-plane positions. We found that the gray area has a higher mass concentration of Al, probably in metallic form, whereas the white area was probably covered more homogeneously with Al2O3, resulting from the inhomogeneous distribution of the pitting positions on the current collector. Compared to FIB-EDX, GD-OES enables a faster and more convenient depth profile analysis, which allows the more productive characterization of lithium-ion batteries (LIBs), and consequently benefits the development of preferable battery materials. KW - GD-OES KW - depth profiles KW - Li-ion battery KW - battery aging mechanism KW - current collector corrosion PY - 2023 DO - https://doi.org/10.1016/j.sab.2023.106681 SN - 0584-8547 VL - 205 SP - 106681 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-57383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Ferreira De Araujo, F. A1 - Gentzmann, Marie A1 - Huthwelker, T. A1 - Cocchi, C T1 - X-ray absorption spectroscopy of scandium oxide polymorphs N2 - Scandium oxide (Sc2O3) is a rare-earth oxide with significant potential in key technological areas, but due to its limited supply a deep understanding of its characteristics in different crystalline phases is still missing. Here, we present a combined experimental and ab initio X-ray absorption spectroscopy investigation of Sc2O3 focusing on excitations from the O K-edge and the Sc L2,3-edge. While measurements are performed on a cubic sample, the most stable phase under ambient conditions, six different polymorphs are computed, including two high-pressure phases with a trigonal and monoclinic lattice in addition to the cubic phase, as well as three computationally predicted structures. Our analysis of the structural and electronic properties reveals significant similarities between the cubic polymorph and the high-pressure trigonal phase, while the monoclinic crystal exhibits distinct features. The spectra simulated for these similar phases from the solution of the Bethe–Salpeter equation show very good agreement with measurements. Additional comparison with results computed in the independent-particle approximation highlights the dominant role of electron–hole correlations in shaping the absorption features, particularly at the O K-edge, where a common pattern with the features of other sesquioxides is identified. Our findings offer new insight into the spectral fingerprints of Sc2O3 polymorphs, aiding in situ characterization and informing sustainable materials management. KW - Scandium PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650806 DO - https://doi.org/10.1039/d5ra06446e VL - 15 IS - 56 SP - 47814 EP - 47825 AN - OPUS4-65080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Ratiometric detection of perfluoroalkyl carboxylic acids using dual fluorescent nanoparticles and a miniaturised microfluidic platform N2 - The widespread contamination of soil and water with perfluoroalkyl substances (PFAS) has caused considerable societal and scientific concern. Legislative measures and an increased need for remediation require effective on-site analytical methods for PFAS management. Here we report on the development of a green-fluorescent guanidine-BODIPY indicator monomer incorporated into a molecularly imprinted polymer (MIP) for the selective detection of perfluorooctanoic acid (PFOA). Complexation of PFOA by the indicator, which is mediated by concerted protonation-induced ion pairing-assisted hydrogen bonding, significantly enhances fluorescence in polar organic solvents. The MIP forms as a thin layer on silica nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, which provides an orange emission signal as internal reference, resulting in low measurement uncertainties. Using a liquid-liquid extraction protocol, this assay enables the direct detection of PFOA in environmental water samples and achieves a detection limit of 0.11 µM. Integration into an opto-microfluidic system enables a compact and user-friendly system for detecting PFOA in less than 15 minutes. KW - PFAS KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Onsite assay PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650270 DO - https://doi.org/10.1038/s41467-025-66872-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoque, Maroof Arshadul A1 - Sommerfeld, Thomas A1 - Lisec, Jan A1 - Das, Prasenjit A1 - Prinz, Carsten A1 - Heinekamp, Christian A1 - Stolar, Tomislav A1 - Etter, Martin A1 - Rosenberger, David A1 - George, Janine A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Mechanochemically Synthesized Covalent Organic Framework Effectively Captures PFAS Contaminants N2 - Per‐ and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that pose significant health risks, prompting urgent efforts to develop effective removal methods and adsorbers. Covalent organic frameworks (COFs) are metal‐free adsorbers with high stability and tunable porosity. A highly crystalline COF is synthesised mechanochemically using 1,3,5‐tris(4‐aminophenyl)benzene (TAPB) and 1,3,5‐triformylbenzene (TFB). The formation dynamics are monitored in real time with time‐resolved in situ synchrotron X‐ray diffraction. The TAPB‐TFB COF demonstrates good efficiency in eliminating PFAS from water. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are effectively extracted, and most of the adsorption occurred within the first 10 min. Additionally, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and DFT calculations are employed to elucidate the molecular interactions between PFAS and the COF framework. The rapid and efficient removal of PFAS makes TAPB‐TFB COF a promising material for water treatment applications. KW - COFs KW - Ball-milling KW - PFAS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648712 DO - https://doi.org/10.1002/smll.202509275 SN - 1613-6810 VL - 21 IS - 44 SP - 1 EP - 8 PB - Wiley AN - OPUS4-64871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sathiyamani, S. A1 - Ngiam, S. A1 - Bonnerot, O. A1 - Jaengsawang, S. A1 - Panarut, P. A1 - Helman-Wazny, Agnieszka A1 - Colini, C. T1 - Material Characterisation of 19–20th Century Manuscripts from Northern Thailand N2 - Material analysis was carried out on four manuscripts from Northern Thailand, which included two palm-leaf manuscripts and two paper manuscripts. The two palm-leaf manuscripts MS 6 and MS 7 were found to have been written in the traditional method, wherein text was incised on the surface of the leaves, and then soot applied to the surfaces, confirmed by the identification of carbon ink. MS 7 additionally showed the presence of trace levels of iron in the ink, either from soot paste or from the stylus used for inscribing. The paper manuscript MS 3 was written in iron-gall ink, with sections written using a methyl-violet based ink while MS 4 was written in carbon ink. The paper used in the case of MS 3 was found to be machine made, while khoi fibres (Streblus asper) were used for making the paper used for MS 4. A combination of traditional and modern pigments, like molybdenum orange, was used for decorating the edges and cover. The results improved our understanding of these manuscripts in particular, and also provided us with insights about the rapid adoption of modern materials and their incorporation into the production of written artefacts from Northern Thailand in the late 19th and early 20th centuries. KW - Materials analysis KW - Paper manuscript KW - Palm-leaf manuscript KW - Writing inks PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652586 DO - https://doi.org/10.1515/res-2023-0028 SN - 0034-5806 VL - 45 IS - 2-3 SP - 117 EP - 140 PB - Walter de Gruyter GmbH AN - OPUS4-65258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - A. Monikh, Fazel A1 - Materić, Dušan A1 - Valsami-Jones, Eugenia A1 - Grossart, Hans-Peter A1 - Altmann, Korinna A1 - Holzinger, Rupert A1 - Lynch, Iseult A1 - Stubenrauch, Jessica A1 - Peijnenburg, Willie T1 - Challenges in studying microplastics in human brain N2 - Human exposure to microplastics and nanoplastics (MNPs) is an emerging concern with potential implications for health. As awareness of this issue grows, it has prompted increasing scientific attention toward understanding if, and how, MNPs accumulate in human tissues. In a recent study, Nihart et al.1 used the analytical technique of pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) to detect MNPs in human liver, kidney and brain, reporting the highest concentrations in the brain, with polyethylene as the predominant polymer. The study as reported appears to face methodological challenges, such as limited contamination controls and lack of validation steps, which May affect the reliability of the reported concentrations. In this Matters Arising, we highlight methodological limitations that have General relevance for advancing robust and reproducible MNP detection in human biomonitoring studies. KW - Microplastics KW - Nanoplastics KW - Py-GC-MS PY - 2025 DO - https://doi.org/10.1038/s41591-025-04045-3 SN - 1078-8956 VL - 31 IS - 12 SP - 1 EP - 3 PB - Springer Science and Business Media LLC AN - OPUS4-64698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grimmer, Christoph A1 - Richter, Matthias A1 - Neuhaus, T. A1 - Prinz, Carsten A1 - Strzelczyk, Rebecca Skadi A1 - Colakoglu, Irem A1 - Horn, Wolfgang T1 - Towards a multi-VOC emission reference material with temporally constant emission profile for QA/QC of materials emission testing procedures N2 - Emission reference materials (ERMs) are sought after to further control and improve indoor air quality. The impregnation of porous materials with volatile organic compounds (VOCs) is a promising approach to produce ERMs. Different VOCs were used to impregnate various porous materials (mainly zeolites, activated carbons and a metal organic framework). The influence of different methodological parameters and material properties were studied to optimize the impregnation procedure and to find the best material/VOC combination. The impregnation procedure remains quite irreproducible, nevertheless, very good ERM candidates were identified. Two materials (zeolite 4 and AC 1 impregnated with n-hexadecane) showed a very stable emission over 14 days (<10 % change). Another material (AC 1 impregnated with toluene) showed a declining emission profile but with a very good in-batch reproducibility and a storage stability of up to 12 months. KW - Emission reference material KW - Porous materials KW - Indoor air quality KW - Emission test chamber KW - CO2 assisted impregnation KW - EN 16516 PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612238 DO - https://doi.org/10.1016/j.chemosphere.2024.143437 SN - 1879-1298 VL - 366 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-61223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lilensten, L. A1 - Provost, K. A1 - Perrière, L. A1 - Fonda, E. A1 - Couzinié, J. A1 - Amman, F. A1 - Radtke, Martin A1 - Dirras, G. A1 - Guillot, I. T1 - Experimental investigation of the local environment and lattice distortion in refractory medium entropy alloys N2 - EXAFS analysis of pure elements, binary and ternary equiatomic refractory alloys within the Nb-Zr-Ti-Hf- Ta system is performed at the Nb and Zr K-edges to analyze the evolution of the chemical local environ- ment and the lattice distortion. A good mixing of the elements is found at the atomic scale. For some compounds, a distribution of distances between the central atom and its neighbors suggests a distortion of the structure. Finally, analysis of the Debye-Waller parameters shows some correlation with the lat- tice distortion parameter δ², and allows to quantify experimentally the static disorder in medium entropy alloys. KW - BAMline KW - Refractory alloys KW - EXAFS KW - Debye-Waller parameter PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114532 SN - 1359-6462 VL - 211 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-55287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Hampel, S. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. E. A. T1 - Investigation on Vanadium Species Distribution in Nafion™ 117 after Cyclization in a Vanadium Redox Flow Battery N2 - The vanadium redox flow battery (VRFB) is currently a potential candidate for stationary energy storage. A major challenge is the unintended vanadium transport through the separator, which results in a fade of capacity. To overcome this issue, it is necessary to understand the transport processes in the membrane on a more fundamental level. In this work, the vanadium species distribution in Nafion™ 117 after cyclization was investigated. Two membranes, one from a charged VRFB and another from a discharged VRFB, were analyzed using ultraviolet–visible spectroscopy (UV/VIS) and X-ray absorption near edge structure spectroscopy (XANES). Little difference between the two membranes was recognizable according to the UV/VIS results. In comparison, the XANES results showed that the membrane from the charged VRFB contains more V3+ than VO2+, whereas for the discharged case, more VO2+ is present in the membrane. KW - Synchrotron KW - BAMline KW - XANES KW - Vanadium redox flow battery PY - 2021 VL - 64 SP - 1 EP - 8 AN - OPUS4-54144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, M.F. A1 - Neri, E. A1 - Radtke, Martin T1 - Gold leaf tesserae: tracing the origins of gold using synchrotron-based techniques N2 - To gain insight into the possible origin of the gold used in the production of tesserae containing gold leaf less than 0.5 μm thick placed between two layers of glass, we propose a non-destructive synchrotron radiation (SR) XRF protocol based on sequential analysis under optimised analytical conditions. Using this protocol, trace element analysis is achieved with detection limits of 1–6 mg/kg. As Pt and Au have adjacent fluorescence energies, we tested the most challenging situation, when Pt is present in very low concentrations in gold. Data obtained by double-dispersive XRF (D2XRF) and μXRF for fourth–ninth-century mosaics decorating nine Eastern and Western religious buildings show that the Eastern and Western tesserae are made from different alloys. However, these alloys are identical to those used to make gold leaf for gilding, because plastic deformation requires the use of gold alloys with high ductility and malleability. Although trace element composition of gold used in the concerned period is only available for coins, by comparing the amounts of Pt contained in the tesserae and in the coins we show that Roman tesserae are made from Roman gold, as described in the documentary sources. We observe for the Byzantine period the use of a Byzantine gold and of gold supposedly from different stages of recycling, and we suggest the use of Umayyad and Abbasid gold for the production of Islamic tesserae. KW - Gold KW - XRF KW - Synchrotron KW - BAMline KW - D2XRF KW - Tesserae PY - 2023 DO - https://doi.org/10.1140/epjp/s13360-022-03638-y SN - 2190-5444 VL - 138 IS - 2 SP - 1 EP - 15 AN - OPUS4-57208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leidigkeit, Carolin A1 - Shokr, Mohammad A1 - Tosson, Amir A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Pietsch, Ullrich A1 - Christ, Hans-Jürgen T1 - Using Energy-Dispersive Laue Diffraction to Study Dislocation Arrangements in Materials Showing Wavy and Planar Slip Behavior N2 - The present work shows an approach to monitor the evolution of the dislocation arrangement of a metallic material caused by cyclic plastic strain using white X-ray radiation in combination with an energy-dispersive detector. The method is demonstrated by single-shot experiments performed on polycrystalline nickel and α-brass, representing the pure wavy and the pure planar dislocation slip behavior. To correlate the resulting diffraction patterns with various dislocation arrangements of both metals, fatigue tests were carried out up to certain numbers of cycles and at predetermined plastic strain amplitudes. The differences in dislocation microstructure and internal stress distributions give rise to an appreciable change in the peak shape of Laue reflections, leading to unique characteristics in the respective diffraction patterns. Nickel reflections are elongated due to the high amount of cell structures leading to bending and misorientation of the lattice, whereas the present stacking faults in α-brass result in powder-like diffraction. KW - Slip behavior KW - Energy-Dispersive KW - Laue Diffraction KW - Dislocation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637964 DO - https://doi.org/10.1111/ffe.14535 SN - 1460-2695 VL - 48 IS - 3 SP - 1341 EP - 1351 PB - Wiley AN - OPUS4-63796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reifschneider, O. A1 - Vennemann, A. A1 - Buzanich, Günter A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Hogeback, J A1 - Köppen, C. A1 - Großgarten, M. A1 - Sperling, M. A1 - Wiemann, M. A1 - Karst, U. T1 - Revealing Silver Nanoparticle Uptake by Macrophages Using SR-μXRF and LA-ICP-MS N2 - To better study the impact of nanoparticles on both in vitro and in vivo models, tissue distribution and cellular doses need to be described more closely. Here silver nanoparticles were visualized in alveolar macrophages by means of synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μXRF) with high spatial resolution of 3 × 3 μm2. For the spatial allocation of silver signals to cells and tissue structures, additional elemental labeling was carried out by staining with eosin, which binds to protein and can be detected as bromine signal with SR-μXRF. The method was compatible with immunostaining of macrophage antigens. We found that the silver distribution obtained with SR-μXRF was largely congruent with distribution maps from a subsequent laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the same tissue sites. The study shows a predominant, though not exclusive uptake of silver into alveolar macrophages in the rat lung, which can be modeled by a similar uptake in cultured alveolar macrophages. Advantages and limitations of the different strategies for measuring nanoparticle uptake at the single cell level are discussed. KW - Synchrotron KW - BAMline KW - XRF KW - Nanoparticle KW - Macrophagen PY - 2020 DO - https://doi.org/10.1021/acs.chemrestox.9b00507 VL - 33 IS - 5 SP - 1250 EP - 1255 PB - American Chemical Society AN - OPUS4-50855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentim Gelamo, Rogério A1 - Bueno Leite, Natália A1 - Amadeu, Nader A1 - Reis Pedreira Muniz Tavares, Michel A1 - Oberschmidt, Dirk A1 - Klemm, Sophie A1 - Fleck, Claudia A1 - Cakir, Cafer-Tufan A1 - Radtke, Martin A1 - Aparecido Moreto, Jéferson T1 - Exploring the Nb2O5 coating deposited on the Ti-6Al-4V alloy by a novel GE-XANES technique and nanoindentation load-depth N2 - This research group has been demonstrating the significant advantages of using Nb2O5 coatings for functionalizing titanium, aluminium, and stainless steels. Regarding the biomedical sector and considering Ti-6Al-4V alloy, the reactive sputtering technique improved the cell viability, the osteogenic performance of cells involved in the osseointegration process as well as the ability to delay bacterial proliferation. The characteristics of the Nb2O5 coatings were assessed before by using standard methods, which provide information only a few tens of nanometers depth. Given that the Nb2O5 coating fabricated in this work exhibits a thickness of approximately 300 nm, the GE-XANES technique emerges as the most suitable method for this analysis. Additional information was provided with the aid of nanoindentation load-depth (P-h) curves. GE-XANES results indicated the formation of a homogeneous layer of Nb2O5 coating on the Ti-6Al-4V surfaces. The deposition process improved the surface hardness of the Ti-6Al-4V alloy (4.38 GPa versus 5.62 GPa) considering the 2 mN load. KW - BAMline KW - GE-XANES KW - Synchrotron PY - 2024 DO - https://doi.org/10.1016/j.matlet.2023.135584 SN - 0167-577X VL - 355 SP - 1 EP - 4 PB - Elsevier B.V. AN - OPUS4-60835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grzelec, Małgorzata A1 - Haas, Sylvio A1 - Helman-Ważny, Agnieszka T1 - Application of scanning small-angle X-ray scattering in the identification of sheet formation techniques in historical papers N2 - Among writing substrates produced historically in different regions of the world, paper is one of the most complex materials. Its complexity results not only from a variety of highly processed ingredients, which can be used in its production, but also from a variety of methods in which these materials are combined to form the fibrillar network referred to as paper. While material identification methods are well established in the analysis of historical papers, the identification of manufacturing technologies is still an under-researched topic, that requires the development of appropriate methods and measurement protocols. This paper reports on the results of a research project aimed at the application of synchrotron scanning small angle X-ray scattering (SAXS) method in the characterization of paper structure, with emphasis on the assessment of fibrillar orientation as a marker characteristic for different, historical papermaking technologies. The main objective of this study consists of the development of a measurement protocol involving the SAXS technique complemented by other analytical methods in the characterization of the fibrous paper structure. KW - SAXS KW - Paper analysis KW - Papermaking technology KW - Fiber orientation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651594 DO - https://doi.org/10.1007/s00339-024-08157-4 SN - 0947-8396 VL - 131 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. D. A1 - Choteau, T. A1 - Martos, G. A1 - Wielgosz, R. A1 - Sarzuri, Y. A. A1 - Mendoza, E. A1 - do Rego, E. C. P. A1 - Violante, F. G. M. A1 - da Silva Souza, W. A1 - de Carvalho, L. J. A1 - Fernandes, J. L. N. A1 - Bates, J. A1 - Rajotte, I. A1 - Melanson, J. E. A1 - Li, H. A1 - Guo, Z. A1 - Su, F. A1 - Wang, S. A1 - Huang, T. A1 - Lalerle, B. A1 - Gantois, F. A1 - Piechotta, Christian A1 - Philipp, Rosemarie A1 - Kaminski, Katja A1 - Klyk-Seitz, Urzsula-Anna A1 - Giannikopoulou, P. A1 - Skotidaki, E. A1 - Kakoulides, E. A1 - Pui-Kwan, C. A1 - Kuroe, M. A1 - Itoh, N. A1 - Calderón, M. A. A. A1 - Contreras, L. R. A1 - Osuna, M. A. A1 - Alrashed, M. A1 - Ting, L. A1 - Mei, G. E. A1 - Juan, W. A1 - Sze, C. P. A1 - Lin, T. T. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Ahn, S. A1 - Chaiphet, T. A1 - Sudsiri, N. A1 - Bellazreg, W. A1 - Bilsel, M. A1 - Colombo, G. T1 - Key comparison CCQM-K78.b - non-polar analytes in organic solvent: methoxychlor and trifluralin in acetonitrile N2 - The CCQM-K78.b key comparison was coordinated by the Bureau International des Poids et Mesures (BIPM) on behalf of the CCQM Organic Analysis Working Group (OAWG) of the 'Comité Consultatif pour la Quantité de Matière' (CCQM), for National Measurement Institutes (NMIs) and Designated Institutes (DIs) providing measurement services in organic analysis under the 'Comité International des Poids et Mesures' (CIPM) Mutual Recognition Arrangement (MRA). This key comparison was conducted as a 'Track A' comparison within the OAWG's 10-year strategic plan. The goal of CCQM-K78.b was to underpin capabilities for the value assignment of calibration solutions containing low polarity/non-polar organic analytes in organic solvents. The selected model system consisted of a two-component pesticide solution in acetonitrile, comprising methoxychlor and trifluralin. Participants were tasked with assigning the mass fractions, in units of μg/g, of methoxychlor and trifluralin in acetonitrile solution. The mass fraction levels and analytical challenges of the selected analytes were representative of those encountered for calibration solutions of non-polar organic analytes. Participation in CCQM-K78.b allowed for the benchmarking of capabilities for assigning the mass fraction of non-polar organic compounds (pKow < -2) in solution, at mass fractions above 5 μg/g, in an organic solvent. Additionally, the comparison assessed the capabilities for the quantitative assignment of thermally labile compounds. Participants were provided by the BIPM with ampoules containing methoxychlor and trifluralin in acetonitrile. Each participant reported the mass fraction content of each analyte in μg/g. All participants ensured the metrological traceability of their results through the use of a Primary Reference Material (PRM), which was used to prepare a primary calibrator solution for each analyte using a gravimetric procedure. The twenty participating institutes primarily used analysis procedures based on GC-MS, -IDMS, -MS/MS, -ECD, and -FID, with some participants also using LC-UV for the value assignment. The analysis of methoxychlor and trifluralin in acetonitrile solution presented several challenges, including the thermal stability of the analytes under selected analytical techniques, control of solvent volatility, and considerable variation in some results using MS-based quantification methods. The mass fraction assignments for methoxychlor and trifluralin, consistent with the key comparison reference values (KCRVs), were achieved with associated relative standard uncertainties of (0.38 - 2.9) % for methoxychlor and (0.35 - 2.5) % for trifluralin. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Methoxychlor KW - Trifluralin KW - CCQM KW - Key comparison PY - 2025 DO - https://doi.org/10.1088/0026-1394/62/1A/08010 SN - 0026-1394 VL - 62 IS - 1A SP - 1 EP - 37 PB - IOP Publishing AN - OPUS4-64691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Richter, Silke A1 - Hoppe, Marion A1 - Meckelburg, Angela A1 - Prinz, Carsten A1 - Roik, Janina A1 - Abad Andrade, Carlos Enrique T1 - Powering precision: development of a certified reference material for elemental composition analysis of lithium nickel manganese cobalt oxide (Li-NMC) cathode material for lithium-ion batteries N2 - This work presents the development and certification of the world’s first certified reference material (CRM), BAM-S014, for a lithium nickel manganese cobalt oxide (LiNi0.33Mn0.33Co0.33O2 or Li-NMC 111) cathode material—an integral component in high-energy-density lithium-ion batteries that power electric vehicles (EVs), portable electronics, and stationary energy storage systems. By providing certified mass fractions for 11 elements, this CRM addresses a critical need for accurate and traceable elemental analysis, supporting quality control and regulatory compliance in the global battery industry. Ensuring reliable and harmonized measurements supports the efficient use of resources, including the reuse of recycled materials, and ultimately helps maintain product performance and safety. The values were assigned through an interlaboratory comparison involving 16 participating laboratories and various analytical techniques such as inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF) spectrometry, and combustion analysis. In addition to chemical characterization, the certification process includes homogeneity and stability testing of the candidate material. Details are provided on the analytical methods used for chemical characterization and the calculation of the uncertainties of the certified mass fractions. In addition to detailing the development of the CRMs, this work provides an overview of ongoing standardization activities in Li-component analysis, thereby guiding the calibration of analytical methods and contributing to the establishment of globally accepted standards for evaluating energy storage materials and advancing sustainable mobility and clean energy solutions. KW - Certified reference material KW - Lithium nickel manganese cobalt oxide KW - LNMC KW - Lithium-ion battery KW - Cathode material PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643763 DO - https://doi.org/10.1007/s00216-025-05766-7 SN - 1618-2642 VL - 417 IS - 12 SP - 2643 EP - 2653 PB - Springer Nature AN - OPUS4-64376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rua-Ibarz, Ana A1 - Nakadi, Flávio V. A1 - Bolea-Fernandez, Eduardo A1 - Bazo, Antonio A1 - Battistella, Beatrice A1 - Matiushkina, Anna A1 - Resch-Genger, Ute A1 - Abad Andrade, Carlos Enrique A1 - Resano, Martín T1 - Discrete entity analysis via microwave-induced nitrogen plasma–mass spectrometry in single-event mode N2 - In this work, single-event microwave-induced nitrogen plasma–mass spectrometry (single-event MINP-MS) was evaluated for the first time for the analysis of discrete entities such as nanoparticles, biological cells, and microplastics. Nitrogen (N2) effectively overcomes Ar-based polyatomic interferences, enabling (ultra)trace element determination of Fe and Se using their most abundant isotopes, 56Fe (91.66%) and 80Se (49.82%). Iron oxide nanoparticles (Fe2O3 NPs) ranging from 20 to 70 nm were accurately characterized, with excellent agreement with established sizing techniques, such as transmission electron microscopy (TEM) and dynamic light scattering (DLS). A limit of detection (LoD) of 8.6 ag for Fe─equivalent to an LoDsize of 19 nm for Fe2O3─was achieved, which is significantly lower than recent values reported for high-end quadrupole-based ICP-MS. Selenium nanoparticles (SeNPs) of 150 and 250 nm were also accurately characterized, without the N2-based plasma experiencing issues handling relatively large metallic NPs (linearity, R2 = 0.9994). Se-enriched yeast cells (SELM-1 certified reference material) were successfully analyzed via single-cell MINP-MS using external calibration based on SeNPs and a transport efficiency-independent approach. In addition, 2–3 μm polystyrene (PS) and polytetrafluoroethylene (PTFE) were accurately sized by monitoring 12C+, confirming the method’s suitability for handling micrometer-sized polymeric materials (microplastics). The average duration of individual events (680 ± 160 μs) suggests that the digestion of individual entities in N2-based plasmas is comparable to that in Ar-based plasmas. These results open new avenues for this instrumentation as an alternative to ICP ionization sources, also in the context of discrete entity analysis. KW - Microwave-Induced Nitrogen Plasma KW - Discrete entity analysis KW - Particle/droplet event counting KW - Comparison to SP-ICP-MS methodologies KW - Nitrogen plasma vs. argon ICP trade-offs KW - Trace elemental quantification at the single-entity level KW - Time-resolved mass spectrometry for discrete entities PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643825 DO - https://doi.org/10.1021/acs.analchem.5c04341 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-64382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Oelze, Marcus A1 - Leonhardt, Robert A1 - Schmidt, Anita A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Exploring Age-Induced Lithium Isotope Fractionation in Lithium-Ion Batteries using Microwave-Induced Cold Nitrogen Plasma Mass Spectrometry N2 - This study explores Microwave-Inductively Coupled Atmospheric-pressure Plasma Mass Spectrometry (MICAP-MS) as a cost-effective alternative to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) for analyzing lithium isotopic composition in lithium-ion batteries (LIBs). We investigate the performance of MICAP-MS in measuring Li isotope ratios in new and aged commercial lithium cobalt oxide (LCO) batteries. Our results show that MICAP-MS, operating under cold plasma conditions at 800 W with an 8 mm torch position, achieves results metrologically compatible with MC-ICP-MS, with a precision ranging from 0.6‰ to 3.4‰ for δ7Li values. MICAP-MS benefits from a dielectric resonator for uniform plasma, better ion velocity control, and higher energy efficiency. Optimal settings were identified with dwell times of 10 ms for 6Li and 1 ms for 7Li. The study of LIBs revealed that 6Li migrates towards the anode over multiple charge–discharge cycles, causing 7Li to accumulate in the cathode, a fractionation effect that becomes more pronounced with prolonged cycling. MICAP-MS provides a cost-effective, precise alternative to MC-ICP-MS, with lower operational costs and enhanced portability, advancing the study of isotopic fractionation and aging in lithium-ion batteries. KW - MICAP-MS KW - Lithium KW - Battery aging KW - Lithium isotopes KW - Nitrogen plasma KW - Isotope fractionation KW - lithium cobalt oxide KW - LCO PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643777 DO - https://doi.org/10.1039/d4ja00324a SN - 0267-9477 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Jegielka, Dennis A1 - Aloysius, Allen A1 - Recknagel, Sebastian T1 - SI-traceable total analysis of nitrate and nitrite by isotope dilution optical spectroscopy and its application to Berlin surface waters N2 - Accurate nitrate and nitrite data support water-quality regulation, yet routine methods rely on external calibration and rarely achieve SI traceability. We report a calibration-free determination of nitrate and nitrite by combining isotope dilution with high-resolution continuum-source graphite furnace molecular absorption spectrometry (ID-HR-CS-GF-MAS). A 15N-enriched nitrate spike (its concentration verified by reverse isotope dilution against the standard reference material NIST 3185) provides the SI link, and it is gravimetrically added to samples; nitrate and residual nitrite are converted in situ to nitric oxide (NO), whose 215 nm band is recorded at a pixel resolution of λ/Δλ ≈ 140 000. The 0.2127 nm shift between 14NO and 15NO electronic spectra is resolved, and a three-latent-variable partial least squares regression model yields the 15N/14N ratio with 0.3% precision. Instrumental LoD values of 4.8 ng (14N) and 3.2 ng (15N) translate to a method LoD of 4.8 ng of nitrogen (equivalent to 1.05 mg L−1 NO3− for a 20 μL aliquot). The furnace program allows for successive drying/pyrolysis loops, so additional 20 μL aliquots can be layered onto the graphite platform. Alternatively, a 10 mL anion-exchange solid-phase extraction step concentrates nitrate and nitrite fivefold, allowing for the analysis of even lower sample concentrations. Results for four certified reference materials (2.9 to 1000 mg L−1 NO3−) agreed with certified values, giving relative expanded uncertainties of 2 to 4%. Analysis of twenty Berlin surface-water samples revealed concentrations ranging from 0.10 to 7.3 mg L−1 NO3−, indicating that the Panke River and Teltow Canal are the primary sources of nitrogen. ID-HR-CS-GF-MAS thus delivers ID-MS-level accuracy in a few minutes per run with bench-top optics, and, with optional on-platform or SPE pre-concentration, extends SI-traceable nitrate/nitrite monitoring into the low-ng regime. KW - Isotope dilution KW - Nitrate and nitrite determination KW - SI-traceable quantification KW - Calibration-free analysis KW - Water quality KW - Berlin surface waters KW - NO molecular absorption bands PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643785 DO - https://doi.org/10.1039/D5JA00252D SN - 0267-9477 VL - 40 IS - 10 SP - 2692 EP - 2701 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Lisec, Jan A1 - Koch, Matthias T1 - Recent Advances in Electrochemical Analysis of Phenylurea Herbicides N2 - Phenylurea herbicides (PUHs) are extensively used in modern agriculture due to their high efficiency in weed control; however, their widespread application has led to persistent environmental contamination and growing public health concerns. Reliable, sensitive, and selective analytical methods are therefore essential for monitoring these compounds in environmental and food matrices. Although several recent reviews have addressed electrochemical sensors and biosensors for a broad range of pollutants, there is currently no dedicated review focusing exclusively on PUHs while integrating electrochemical sensors, biosensors, molecularly imprinted polymers (MIPs), and electrochemical detection coupled with liquid chromatography (LC). This review provides a comprehensive and critical overview of electrochemical strategies developed for the analysis of PUHs. Core electroanalytical techniques, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and chronoamperometry (CA), are discussed in terms of their fundamental principles, analytical roles, and suitability for mechanistic investigation, quantitative determination, and rapid screening. Electrochemical impedance spectroscopy (EIS) is also examined, particularly for its application in the characterization of electrode interfaces and in electrochemical biosensor development. Furthermore, the integration of electrochemical methods with mass spectrometry is highlighted as a powerful approach for elucidating redox mechanisms and identifying electrochemical transformation products. More than one hundred electrochemical sensors and biosensors reported between 1993 and 2025 are critically evaluated, with emphasis on electrode materials, surface modification strategies, detection mechanisms, analytical performance, and applicability to real samples. The advantages and limitations of electrochemical sensors, biosensors, and MIP-based platforms are systematically discussed in the context of sensitivity, selectivity, response time, and matrix effects. By synthesizing current advances and identifying remaining challenges, this review aims to provide clear guidance for future research and to support the development of robust, efficient, and application-oriented electrochemical methods for PUHs analysis. KW - Mass Spectrometry KW - Phenylurea herbicides KW - Electrochemistry PY - 2025 DO - https://doi.org/10.1016/j.snr.2025.100431 SN - 2666-0539 SP - 1 EP - 67 PB - Elsevier B.V. AN - OPUS4-65286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Margreiter, R. A1 - Baumann, J. A1 - Mantouvalou, I. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Strub, E. T1 - Investigations on fire-gilding N2 - Fire-gilding is a historic technique for the application of golden layers on a number of different base materials utilizing a gold amalgam. This technique leaves a significant amount of Hg in the golden layer, giving archeometrists a reliable indicator to identify firegildings. Recent findings on presumably fire-gilded objects have shown in several cases significantly lower Hg content than previously studied objects. This prompted a synchrotron-based X-ray fluorescence investigation into the Hg distribution along the material–gilding interface, as well as a series of measurements regarding the Hg content development in fire-gilded samples during artificial aging. This work presents findings on laboratory-prepared fire-gildings, indicating an Hg enrichment at the interface of firegilded silver samples. Notably, such an enrichment is missing in fire-gilded copper samples. Further, it is confirmed that fire-gilded layers typically do not undercut an Hg bulk content of 5%. In this light, it seems improbable that ancient samples that contain <5% Hg are fire-gilded. The results presented in this study might lead to a non-destructive method to identify the Hg enrichment at the interface. This might be obtained by a combination of different non-destructive measurements and might also work unambiguously in samples in which the gold top layer is altered. KW - BAMline KW - X-Ray Fluorescence KW - Gilding KW - Depth profile KW - Archaeometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552885 DO - https://doi.org/10.1111/arcm.12797 SN - 0003-813X SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-55288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dobosy, Péter A1 - Nguyen, Hoang Thi Phuong A1 - Záray, Gyula A1 - Streli, Christina A1 - Ingerle, Dieter A1 - Ziegler, Philipp A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Endrédi, Anett A1 - Fodor, Ferenc T1 - Effect of iodine species on biofortification of iodine in cabbage plants cultivated in hydroponic cultures N2 - Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2–7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, − 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues. KW - BAMline KW - XANES KW - Synchrotron KW - Lodine PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608330 DO - https://doi.org/10.1038/s41598-024-66575-z VL - 14 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Junhao A1 - Klahn, Marcus A1 - Tian, Xinxin A1 - Bartling, Stephan A1 - Zimina, Anna A1 - Radtke, Martin A1 - Rockstroh, Nils A1 - Naliwajko, Pawel A1 - Steinfeldt, Norbert A1 - Peppel, Tim A1 - Grunwaldt, Jan‐Dierk A1 - Logsdail, Andrew J. A1 - Jiao, Haijun A1 - Strunk, Jennifer T1 - Fundamental Structural and Electronic Understanding of Palladium Catalysts on Nitride and Oxide Supports N2 - The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single‐atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non‐metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non‐metal and metal oxide). Through thorough oxidation state investigations by X‐ray absorption spectroscopy (XAS), X‐ray photoelectron spectroscopy (XPS), CO‐DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd−N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity. KW - BAmline KW - XANES KW - Catalyst PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608341 DO - https://doi.org/10.1002/anie.202400174 SN - 1433-7851 VL - 63 IS - 20 SP - 1 EP - 9 PB - Wiley AN - OPUS4-60834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senges, Gene A1 - de Oliveira Guilherme Buzanich, Ana A1 - Lindič, Tilen A1 - Gully, Tyler A. A1 - Winter, Marlon A1 - Radtke, Martin A1 - Röder, Bettina A1 - Steinhauer, Simon A1 - Paulus, Beate A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Unravelling highly oxidized nickel centers in the anodic black film formed during the Simons process by in situ X-ray absorption near edge structure spectroscopy N2 - The electrofluorination after Simons has been used for the last century to produce everyday life materials. An in situ XANES investigation of the controversially debated black film apparent in the Simons process revealed high-valent nickel centers. KW - Synchrotron KW - BAMline KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608366 DO - https://doi.org/10.1039/d3sc06081k SN - 2041-6520 VL - 15 IS - 12 SP - 4504 EP - 4509 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Förste, F. A1 - Bauer, L. A1 - Streeck, C. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Kadow, D. A1 - Keil, C. A1 - Mantouvalou, I. T1 - Quantitative Analysis and 2D/3D Elemental Imaging of Cocoa Beans Using X‑ray Fluorescence Techniques N2 - As an important raw material for the confectionery industry, the cocoa bean (Theobroma cacao L.) has to meet certain legal requirements in terms of food safety and maximum contaminant levels in order to enter the cocoa market. Understanding the enrichment and distribution of essential minerals but also toxic metals is of utmost importance for improving the nutritional quality of this economically important raw food material. We present three X-ray fluorescence (XRF) techniques for elemental bio-imaging of intact cocoa beans and one additional XRF technique for quantitative analysis of cocoa pellets. The interrelation of all the methods presented gives a detailed picture of the content and 3D-resolved distribution of elements in complete cocoa beans for the first time. KW - BAMline KW - Synchrotron KW - XRF KW - CXC KW - Cocoa PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05370 VL - 95 SP - 5627 EP - 5635 PB - ACS Publications AN - OPUS4-57832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Bouchikhi, B. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - El Bari, N. T1 - Assessment of outdoor odor emissions from polluted sites using simultaneous thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), electronic nose in conjunction with advanced multivariate statistical approaches N2 - Poor air quality, particularly in urban areas, causes various diseases and degrades living standards. Air Quality could be affected by emissions of odor, Volatile Organic Compounds (VOCs), and other gases. Therefore, assessment and monitoring of odorous air quality using sensitive, simple, rapid, accurate and portable tools is very important for public health. This study aimed to characterize odor emissions to detect malfunctions in facilities and to prevent air pollution and olfactory nuisance in the environment. A gas chromatographic method, in conjunction with sensorial analysis were performed for odorous air samples analysis collected from neighborhood of Meknes city (Morocco). Advanced multivariate statistical approaches, such as Principal Components Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to describe samples similarities. The electronic nose (e-nose) data processing exhibits a satisfactory discrimination between the odorous air samples. Twenty-four VOCs with known molecular formulas were identified with Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). A validated Partial Least Square (PLS) model foresees good calibration between e-nose measurement and TD-GCMS analysis. The finding indicates that TD-GC–MS approach in conjunction with e-nose unit could be suitable tool for environmental measurement-based odor emissions. KW - Electronic nose KW - TD-GC-MS KW - PLS regression KW - Multivariate analysis KW - Outdoor odor emissions PY - 2021 DO - https://doi.org/10.1016/j.atmosenv.2021.118449 SN - 1352-2310 VL - 256 SP - 118449 PB - Elsevier Ltd. AN - OPUS4-52626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Vogl, Jochen A1 - Gluth, Gregor A1 - Stephan, D. T1 - Provenancing of cement using elemental analyses and isotope techniques – The state-of-the-art and future perspectives N2 - With the aim of identifying the origin and the manufacturer of a cement, a reliable procedure that provides unambiguous results is needed. Such procedure could resolve practical issues in damage research, liability issues and forensic investigations. A substantial number of attempts for fingerprinting of building materials, including cement, has already been carried out during the last decades. Most of them were based on concentration analysis of the main elements/components. This review provides an overview of provenance studies of cement and the main approaches commonly used. Provenance studies of cement via isotope techniques are also presented and discussed as representatives of the state-of-the-art in the field. Due to the characteristic properties and the occurrence of carefully selected isotope ratios, unique fingerprints of different kinds of materials can be provided by these methods. This property has largely been explored in various scientific fields such as geo- and cosmochemistry, food forensics, archaeology, geochronology, biomedical studies, and climate change processes. However, the potential of isotope techniques in cement and concrete research for provenance studies has barely been investigated. Therefore, the review outlines a suitable approach using isotope ratios, which could lead to reliable provenancing of cementitious materials in the future. KW - Cement KW - Sr isotopes KW - Provenance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533762 DO - https://doi.org/10.1039/d1ja00144b VL - 36 IS - 10 SP - 2030 EP - 2042 PB - The Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-53376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana T1 - Recent developments of X-ray absorption spectroscopy as analytical tool for biological and biomedical applications N2 - X-ray absorption spectroscopy (XAS), in its various modalities, has gained exponential attention and applicability in the field of biological and biomedical systems. Particularly in this field, challenges like low concentration of analyte or proneness to radiation damage have certainly settle the basis for further analytical developments, when using X-ray based methods. Low concentration calls for higher sensitivity—by increasing the detection limits (DL); while susceptibility for radiation damage requires shorter measurement times and/or cryogenic sample environment possibilities. This manuscript reviews the latest analytical possibilities that make XAS more and more adequate to investigate biological or biomedical systems in the last 5 years. KW - Biological & biomedical applications KW - TXRF-XAS KW - HERFD-XAS KW - RXES KW - Quick-XAS KW - Dispersive-XAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531206 DO - https://doi.org/10.1002/xrs.3254 SN - 0049-8246 VL - 51 IS - 3 SP - 1 EP - 10 PB - John Wiley & Sons Ltd AN - OPUS4-53120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Bartling, Stephan A1 - Parlinska-Wojtan, Magdalena A1 - Wotzka, Alexander A1 - de Oliveira Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian A1 - Abdel-Mageed, Ali M. T1 - Stabilization of intermediate Mo oxidation states by Nb doping enhancing methane aromatization on Mo/HZSM-5 catalysts N2 - The dehydroaromatization of methane is a promising process to produce aromatics and ultra-pure hydrogen. Increased yields and stability of Mo/HZSM-5 against irreversible deactivation were achieved via a redox interaction by doping with otherwise inert Nb. KW - General Materials Science KW - Sustainability and the Environment KW - General Chemistry KW - Renewable Energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597670 DO - https://doi.org/10.1039/D3TA07532J SN - 2050-7488 SP - 1 EP - 16 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radtke, Martin A1 - Rakotondrajoa, A. T1 - Machine learning based quantification of synchrotron radiation-induced X-ray fluorescence measurements - a case study N2 - In this work, we describe the use of artificial neural networks for the quantification of X-ray fluorescence measurements. The training data were generated using Monte Carlo simulation, which avoided the use of adapted reference materials. The extension of the available data set by means of an ANN to generate additional data was demonstrated. Particular emphasis was put on the comparability of simulated and experimental data and how the influence of deviations can be reduced. The search for the optimal hyperparameter, manual and automatic, is also described. For the presented case, we were able to train a network with a mean absolute error of 0.1 weight percent for the synthetic data and 0.7 weight percent for a set of experimental data obtained with certified reference materials. KW - Machine learning KW - BAMline KW - XRF KW - Synchrotron KW - Neural network PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519008 DO - https://doi.org/10.1088/2632-2153/abc9fb SP - 1 EP - 16 PB - IOP Publishing AN - OPUS4-51900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Junge, Florian A1 - Wittwer, Philipp A1 - Sommerfeld, Thomas A1 - Gehrenkemper, Lennart A1 - Zoister, Christian A1 - Nickl, Philip A1 - Koch, Matthias A1 - Meermann, Björn A1 - Haag, Rainer T1 - Adsorber Charge Dominates over Hydrophobic or Fluorophilic Functionalization in Influencing Adsorption of PFCA onto Polystyrene Resins N2 - A systematic series of industrial-relevant polystyrene-based anion exchange resins that are functionalized with hydro- or fluorocarbon chains are compared regarding their adsorption behavior toward perfluorocarboxylic acids (PFCA) in respect to their charge, chain length, and type of chain. The results clearly show the dominance of electrostatic interactions in the adsorption process as uncharged adsorber materials showed no adsorption at all. In contrast, the charged adsorber materials showed in general a PFCA removal of 80% to 30% over the experiment depending on effluent fraction. Unexpectedly, for perfluorobutanoic acid (PFBA) the highest removal rate is found with consistently >90%. Despite observing significant benefits in the adsorption of PFCA for fluoroalkylated adsorbers in comparison to their non-fluorinated counterparts, this effect of fluoroalkylation is comparatively small and can not be clearly attributed to fluorophilic interactions between the fluoroalkyl chains. These findings help clarifying that the introduction of fluorocarbon moieties in adsorber materials is not necessary in order to remove fluorocarbon molecules from the environment. KW - PFAS KW - Remediation KW - Adsorption KW - Fluorophilic interactions PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601883 DO - https://doi.org/10.1002/admi.202400199 SN - 2196-7350 SP - 1 EP - 10 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-60188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Altmann, Korinna A1 - Ciornii, Dmitri A1 - Milczewski, Frank A1 - Bañares, Miguel A. A1 - Portela, Raquel A1 - Giovannozzi, Andrea Mario A1 - Rossi, Andrea Mario T1 - Tracking nanoplastics in drinking water: a new frontier with the combination of dielectrophoresis and Raman spectroscopy N2 - Detection of micro- (MPs) and nanoplastics (NPs) in food and environmental matrices has been gaining relevance due to their potential toxicological effects on human health. While MPs have been detected in a wide range of complex matrices, suitable methods for the characterization and chemical identification of NPs are still lacking, primarily due to significant methodological challenges associated with their nano-specific physiochemical properties, including size distribution (1 nm – 1 µm), dynamic surface chemical changes, and carbon-based composition, which complicate their detection compared to engineered nanomaterials. To overcome the traditional limitations of spectroscopic techniques in terms of spatial resolution and sensitivity at the sub-micrometer level, a novel label-free methodology is presented for specifically identifying the chemical composition of NPs directly in suspension by combining Raman spectroscopy with dielectrophoresis (DEP). Using a custom-built device, small volumes of NPs are injected into a dielectrophoretic cell and locally trapped by DEP forces to fill the Raman confocal volume, facilitating their detection and identification, and providing high signal-to-noise ratio Raman spectra for more reliable analysis. This approach was successfully applied to both Milli-Q water and a commercial brand of drinking water, enabling the rapid identification of various types of NPs with different sizes and polymer compositions at concentrations as low as 20 µg/mL. These included certified reference polystyrene beads ranging from 800 to 60 nm in diameter, as well as polydisperse NPs, more representative of real samples in terms of size distribution and polymer type, such as polyethylene (450 nm), polypropylene (180 nm), and polyethylene terephthalate (100 nm). Moreover, the chemical fingerprint of each NPs was thoroughly investigated and compared with the corresponding bulk polymers, highlighting possible changes in the Raman bands due to surface oxidation or nanometer-scale effect. Therefore, this innovative method can be considered a valuable approach for addressing gaps in the detection and identification of NPs, as well as for monitoring their dynamic phisiochemical changes in real matrices. KW - Nanoplastics KW - Water contaminants KW - Raman microspectroscopy KW - Dielectrophoresis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633658 DO - https://doi.org/10.1186/s43591-025-00131-y SN - 2662-4966 VL - 5 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-63365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, J. A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine in Amperometric Assays N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for Monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3’,5,5’-tetramethylbenzidine (TMB),form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detectionstep, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphonebased, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis forsensing of further analytes. KW - Ochratoxin A KW - Amperometry KW - Cyclic voltammetry KW - Electrochemistry KW - Immunoassay PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530421 DO - https://doi.org/10.1002/celc.202100446 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 8 IS - 13 SP - 2597 EP - 2606 AN - OPUS4-53042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Devi, Sarita A1 - Riedel, Soraya A1 - Döring, Sarah A1 - Hiller, Lukas A1 - Kaliyaraj Selva Kumar, Archana A1 - Flemig, Sabine A1 - Singh, Chandan A1 - Konthur, Zoltán A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Antibodies Functionalized Magnetic Fe-Metal-Organic Framework Based Biosensor for Electrochemical Detection of Tetanus Neurotoxin N2 - This work presents a metal-organic framework (MOF)-integrated microfluidic flow-cell (MFC) based immunodetection of the tetanus toxoid (TT) using electrochemical technique for the first time. The magnetic property of Fe-MOF helped to hold them on the working electrode at detection zone of MFC surpassing the requirement of additional conjugation chemistry, whereas the conductive property was utilized to observe the change in signal efficiency in the presence of TT. The one-pot hydrothermal synthesis of a magnetic and conductive iron-based MOF (Fe-MOF) was performed using the Fe3 +/Fe2+ precursors as 1.2/1 mmol and dual ligands, i.e., tetrahydroxy-1,4-benzoquinone and 2-aminobenzene-1,4-dicarboxylic acid. The Fe-MOF was conjugated with L-phenylalanine (Fe-MOF/Phe) to increase its electric conductivity owing to the enhanced electron flow rate. The human monoclonal antibody SA13 against TT (anti-TT mAb) was conjugated on the Fe-MOF/Phe surface with the help of ethylenediamine (Fe-MOF/Phe/EDA/anti-TT mAb). The binding affinity of Fe-MOF/Phe/EDA/anti-TT mAb for the TT antigen was evaluated using cyclic voltammetry technique. The limit of detection of the Fe-MOF/Phe/EDA/anti-TT mAb-based biosensor for TT was 9.4 ng/ml in spiked buffer. This study shows the applicability of these Fe-MOFs in the detection of various other microbial toxins or other biomolecules. KW - Antikörper KW - Elektrochemischer Immunoassay KW - Molecular Organic Framework (MOF) KW - Microfluidics KW - Rekombinant PY - 2025 DO - https://doi.org/10.1016/j.snb.2025.137381 SN - 0925-4005 VL - 431 SP - 1 EP - 12 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-62673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zia, Ghezal Ahmad Jan A1 - Hanke, Thomas A1 - Skrotzki, Birgit A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Enhancing Reproducibility in Precipitate Analysis: A FAIR Approach with Automated Dark-Field Transmission Electron Microscope Image Processing N2 - AbstractHigh-strength aluminum alloys used in aerospace and automotive applications obtain their strength through precipitation hardening. Achieving the desired mechanical properties requires precise control over the nanometer-sized precipitates. However, the microstructure of these alloys changes over time due to aging, leading to a deterioration in strength. Typically, the size, number, and distribution of precipitates for a quantitative assessment of microstructural changes are determined by manual analysis, which is subjective and time-consuming. In our work, we introduce a progressive and automatable approach that enables a more efficient, objective, and reproducible analysis of precipitates. The method involves several sequential steps using an image repository containing dark-field transmission electron microscopy (DF-TEM) images depicting various aging states of an aluminum alloy. During the process, precipitation contours are generated and quantitatively evaluated, and the results are comprehensibly transferred into semantic data structures. The use and deployment of Jupyter Notebooks, along with the beneficial implementation of Semantic Web technologies, significantly enhances the reproducibility and comparability of the findings. This work serves as an exemplar of FAIR image and research data management. KW - Industrial and Manufacturing Engineering KW - General Materials Science KW - Automated image analysis KW - FAIR research data management KW - Reproducibility KW - microstructural changes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593905 DO - https://doi.org/10.1007/s40192-023-00331-5 SN - 2193-9772 SP - 1 EP - 15 PB - Springer Science and Business Media LLC CY - Heidelberg AN - OPUS4-59390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alekseychuk, V. O. A1 - Kupsch, Andreas A1 - Plotzki, D. A1 - Bellon, Carsten A1 - Bruno, Giovanni T1 - Simulation-Assisted Augmentation of Missing Wedge and Region-of-Interest Computed Tomography Data N2 - This study reports a strategy to use sophisticated, realistic X-ray Computed Tomography (CT) simulations to reduce Missing Wedge (MW) and Region-of-Interest (RoI) artifacts in FBP (Filtered Back-Projection) reconstructions. A 3D model of the object is used to simulate the projections that include the missing information inside the MW and outside the RoI. Such information augments the experimental projections, thereby drastically improving the reconstruction results. An X-ray CT dataset of a selected object is modified to mimic various degrees of RoI and MW problems. The results are evaluated in comparison to a standard FBP reconstruction of the complete dataset. In all cases, the reconstruction quality is significantly improved. Small inclusions present in the scanned object are better localized and quantified. The proposed method has the potential to improve the results of any CT reconstruction algorithm. KW - Computed tomography KW - Missing wedge KW - Region of interest KW - Augmented data KW - CT simulation KW - aRTist PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593799 UR - https://www.mdpi.com/2313-433X/10/1/11 DO - https://doi.org/10.3390/jimaging10010011 SN - 2313-433X VL - 10 IS - 1 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-59379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obenlüneschloß, Jorit A1 - Boysen, Nils A1 - Rönnby, Karl A1 - Muriqi, Arbresha A1 - Hoffmann, Volker A1 - Abad Andrade, Carlos Enrique A1 - Rogalla, Detlef A1 - Brokmann, Ulrike A1 - Rädlein, Edda A1 - Nolan, Michael A1 - Devi, Anjana T1 - Rare Mononuclear Lithium-Carbene Complex for Atomic Layer Deposition of Lithium Containing Thin Films N2 - Lithium is the core material of modern battery technologies and fabricating the lithium‐containing materials with atomic layer deposition (ALD) confers significant benefits in control of film composition and thickness. In this work, a new mononuclear N‐heterocyclic carbene (NHC) stabilized lithium complex, [Li(tBuNHC)(hmds)], is introduced as a promising precursor for ALD of lithium‐containing thin films. Structural characterization is performed, comparing density functional theory (DFT) and single‐crystal X‐ray diffraction (SC‐XRD), confirming a rare mononuclear structure. Favorable thermal properties for ALD applications are evidenced by thermogravimetric analysis (TGA). The compound exhibits a low melting point, clean evaporation, and its volatility parameters are encouraging compared to other lithium precursors. ALD trials using [Li(tBuNHC)(hmds)] with ozone demonstrate its effectiveness in depositing LiSixOy films. The ALD process exhibits a saturated growth per cycle (GPC) of 0.95 Å. Compositional analysis using Rutherford backscattering spectrometry/nuclear reaction analysis (RBS/NRA), X‐ray photoelectron spectrometry (XPS), and glow discharge optical emission spectrometry (GD‐OES), confirms the presence of lithium and silicon in the expected ratios. This work not only presents a new ALD precursor but also contributes to the understanding of lithium chemistry, offering insights into the intriguing coordination chemistry and thermal behavior of lithium complexes stabilized by NHC ligands. KW - Atomic layer deposition (ALD) KW - N-heterocyclic carbene (NHC) ligands KW - Lithium ALD precursor chemistry KW - Mononuclear Li–carbene complex [Li(tBuNHC)(hmds)] KW - Li-silicate thin films (LiSixOy) KW - Thermal properties & TGA/volatility KW - Compositional analysis (RBS/NRA, XPS, GD-OES) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643790 DO - https://doi.org/10.1002/anie.202513066 SN - 1433-7851 N1 - Es gibt eine parallele Sprachausgabe (deutsch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (German), a link is in the field related identifier SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, Párástu A1 - Afonso, Rúben A1 - Bastos, Verónica A1 - Nogueira, João A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, Ana L. A1 - Oliveira, Helena T1 - Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells N2 - Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. KW - Fluorescence KW - Synthesis KW - Nano KW - Particle KW - Silica KW - Cell KW - Uptake KW - Drug KW - Characterization KW - DOX KW - Imaging KW - Toxicity KW - Release KW - pH PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653596 DO - https://doi.org/10.3390/molecules31010074 SN - 1420-3049 VL - 31 IS - 1 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-65359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Danischewski, Julia L. A1 - You, Yi A1 - Bauer, Lauren A1 - Riedel, Jens A1 - Shelley, Jacob T. T1 - Use of Resonant Acoustic Fields as Atmospheric-Pressure Ion Gates N2 - Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis. Unfortunately, these devices rely on pulsed high voltage sources and are not fully transparent, even in their open state, which can lead to ion losses and contamination. Here, a novel atmospheric-pressure ion gate based on a resonant acoustic field structure is described. This effect was accomplished through the formation of a resonant, standing acoustic wave of alternating nodes and antinodes. Alignment of an atmospheric-pressure gaseous ion beam with an antinode, i.e. a region of transient pressure, of the acoustic structure acted as a gate and blocked ions from impinging on ion-selective detectors, such as a mass spectrometer and a Faraday plate. The velocity of the ion stream and acoustic power were found to be critical parameters for gating efficiency. In the presence of an acoustic field (i.e., a closed gate), ion signals decreased by as much as 99.8% with a response time faster than the readout of the ion-measurement devices used here (ca. 75 ms). This work demonstrates the basis for a low-cost, acoustic ion gate, which is optically transparent and easily constructed with low-power, off-the-shelf components, that could potentially be used with MS and IMS instrumentation. KW - Acoustic Ion Manipulation PY - 2025 DO - https://doi.org/10.1021/acs.analchem.4c05493 SN - 1520-6882 VL - 97 IS - 5 SP - 2890 EP - 2898 PB - American Chemical Society AN - OPUS4-62648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Onyenso, Gabriel A1 - AI-Zawity, Jiwar A1 - Farahbakhsh, Nastaran A1 - Schardt, Annika A1 - Yadigarli, Aydan A1 - Vakamulla Raghu, Swathi Naidu A1 - Engelhard, Carsten A1 - Müller, Mareike A1 - Schönherr, Holger A1 - Killian, Manuela S. T1 - Novel Ag-modified zirconia nanomaterials with antibacterial activity N2 - The outcome of an implant procedure largely depends on the implant's surface properties. Biomaterials are now designed to have surfaces with multifunctionality, such as favorable tissue integration and the ability to combat bacterial adhesion and colonization. Herein, we report on a simple approach to improve the antibacterial properties of zirconia nanotubes (ZrNTs) coatings by decorating with silver nanoparticles (AgNP), achieved through electrochemical anodization of a zirconium–silver alloy (Zr–Ag). The AgNPs were shown to partially consist of Ag2O, potentially enhancing the availability of Ag+ ions for antibacterial activity. The modified ZrNTs were characterized using SEM, EDS, ToF-SIMS, and XPS to determine their structural morphology and chemical composition, and were further subjected to antibacterial testing. The silver and zirconium ion release behavior was monitored via ICP-MS. ZrNTs decorated with AgNP exhibit strong antimicrobial activity (>99% bacterial killing) against both S. aureus and E. coli. Antimicrobial tests indicate that the antibacterial activity against the Gram-positive pathogen S. aureus was improved by a factor of 100 compared to unmodified ZrNTs, while unmodified ZrNTs already showed a comparable reduction of viable Gram-negative E. coli. This strategy illustrates a straightforward and effective modification that optimizes the interface between the host environment and the biomaterial surface to meet the very important criteria of biocompatibility and active antibacterial response. KW - Mass Spectrometry KW - Nanoparticles KW - Advanced Materials KW - ICP-MS KW - Antimicrobial material KW - ToF-SIMS PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653990 DO - https://doi.org/10.1039/d5ra07099f SN - 2046-2069 VL - 16 IS - 3 SP - 2286 EP - 2297 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Putzu, Mara A1 - Wiesner, Yosri A1 - Weimann, Christiane A1 - Hodoroaba, Vasile-Dan A1 - Muniategui Lorenzo, Soledad A1 - Fernández-Gonzáles, Verónica A1 - Booth, Andy M. A1 - Igartua, Amaia A1 - Benismail, Nizar A1 - Coïc, Laureen A1 - Chivas-Joly, Carine A1 - Fenoglio, Ivana A1 - Rossi, Andrea Mario A1 - Giovannozzi, Andrea Mario A1 - Altmann, Korinna T1 - Optimization of tablet processing as a reference material for microplastic detection methods N2 - Reference materials (RMs) are essential and highly demanded tools for the development and validation of methods for microplastic (MP) quantification in complex matrices, to ensure comparable and harmonized approaches aligned with EU commission criteria for monitoring MPs (e.g., Drinking Water Directive and Urban Wastewater Treatment Directive). This study investigates different approaches for optimizing the production of polypropylene (PP) RMs in the form of water-soluble tablets, which were carefully evaluated for their homogeneity and stability according to ISO Guide 30, ISO 33401, and ISO 33405. PP particles (1–100 μm) were produced by cryomilling and embedded in a lactose/PEG matrix, then pressed into tablets (18 µg theoretical PP mass). The production process was optimized by varying (i) the size distribution of the matrix components and (ii) the mixer instrument. The materials obtained were characterized by thermogravimetric analysis to assess the homogeneity distribution of MPs with respect to PP mass in the individual tablets and their stability over a 4-month period. The most promising approach, with a homogenous mass of 19 μg (standard deviation of 4 μg), relative standard deviation of 19%, was further investigated for homogeneity by comparison with thermo-analytical mass determination methods, such as TED-GC/MS (thermal extraction desorption-gas chromatography/mass spectrometry) and Py-GC/MS (pyrolysis-gas chromatography-mass spectrometry), and for number-based characterization using micro-Raman spectroscopy. Material characterization was also examined using laser diffraction, scanning electron microscopy, and ATR-FTIR. Based on the results, the optimized processing protocol yields a PP RM suitable for quality control and method performance studies supporting standardization. KW - Microplastics KW - TED-GC/MS KW - Reference materials KW - Polypropylene PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653290 DO - https://doi.org/10.1007/s00216-025-06271-7 SN - 1618-2642 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Xunyu A1 - Riedel, Jens A1 - You, Yi T1 - Practical high-resolution spectroscopy with a spatial heterodyne spectrometer: Determination of instrumental function for lineshape recovery N2 - The spatial heterodyne spectrometer (SHS) is a well-recognized platform for its high resolving power in various use cases of spectroscopy. Same as other spectrometer topologies, the SHS, unfortunately, also suffers from classical challenges such as distorted lineshape due to the instrumental function. The goal of this work is to tackle this persisting issue through a simple numerical approach. With the inherent characteristics of an SHS interferogram, we report the direct extraction and determination of the instrumental function in its numerical representation from an SHS interferogram; this instrumental function was further used for spectral data processing that enables significant improvements in spectral resolution through deconvolution algorithms.Here, we systematically discuss the recognition of the embedded instrumental function among various ingredients within an interferogram. To verify the numerical approach, lithium was chosen as the model sample, resembling the use of SHS in an isotopic analysis application. Specifically, the resonance transition of lithium D-lines (2P1/2,3/2 ← 2S1/2) was selected to assess the performance of the spectral processing. With the spectral deconvolution, the spectral features that represent the 6Li and 7Li were nearly baseline-separated, allowing for the accurate measure of the isotopic abundance without external references or algorithm adjustments (e.g., curve fitting). KW - SHS KW - Isotopic analysis KW - High Resolution PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613401 DO - https://doi.org/10.1016/j.sab.2024.107053 SN - 0584-8547 VL - 221 SP - 1 EP - 5 PB - Elsevier AN - OPUS4-61340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinbeck, Christoph A1 - Jung, Nicole A1 - Bach, Felix A1 - Neumann, Steffen A1 - Herres-Pawlis, Sonja A1 - Liermann, Johannes A1 - Koepler, Oliver A1 - Bannwarth, Christoph A1 - Bender, Theo A1 - Bocklitz, Thomas A1 - Boehm, Franziska A1 - Bonatto Minella, Christian A1 - Biedermann, Frank A1 - Brack, Werner A1 - Cunha, Ricardo A1 - Czodrowski, Paul A1 - Eberl, Franziska A1 - Engel, Thomas A1 - Engstfeld, Albert A1 - Fischer, Tillmann G. A1 - Friedrich, Pascal A1 - Glorious, Frank A1 - Golub, Benjamin A1 - Grathwol, Christoph A1 - Haag, Rainer A1 - Hunold, Johannes A1 - Jacob, Christoph A1 - Johannsen, Jochen A1 - Jollife, John A1 - Kast, Stefan A1 - Kettner, Carsten A1 - Kuhn, Stefan A1 - Lanza, Giacomo A1 - Lisec, Jan A1 - Manolikakes, Georg A1 - Mata, Ricardo A1 - Meiler, Jens A1 - Müller, Matthias A1 - Müller-Pfefferkorn, Ralph A1 - Ortmeyer, Jochen A1 - Patterson, Wendy A1 - Pleiss, Jürgen A1 - Riedel, Annalisa A1 - Riedel, Jens A1 - Schatzschneider, Ulrich A1 - Schuster, Leonie A1 - Seeberger, Peter A1 - Seibert, Johann-Nikolaus A1 - Stadler, Peter A1 - Zeitler, Kirsten T1 - Proposal NFDI4Chem 2025-2030 In the National Research Data Infrastructure (NFDI) — Our Vision: All Chemists Publish FAIR Data N2 - The first funding period of NFDI4Chem established a robust foundation for research data management (RDM) in chemistry by promoting FAIR data principles and creating a cohesive infrastructure to capture well-annotated data early in the lab through electronic lab notebooks (ELNs) and making this data available in public repositories. Key achievements include standardised data formats and metadata, a federated repository environment, and improved data visibility and accessibility. Training programs and outreach have significantly increased awareness and adoption of best RDM practices. In the second funding period, the consortium aims to advance these achievements by consolidating this infrastructure, developing a model for its sustainable maintenance and operation, and fostering cultural change for its widespread adoption. Goals include ensuring seamless data workflows from laboratories to open repositories, enhancing interoperability, and supporting innovative research through AI-ready data. The work plan is organised into six task areas (TAs). TA1 (Management) provides leadership and supports all other TAs in achieving their objectives. TA2 (Smart Lab) aims to develop a fully digital research environment, including an ELN as a modular platform. This environment will support data collection, management, storage, analysis, and sharing. Integrating devices and external resources will enable seamless data transfer to repositories. TA3 (Repositories) will consolidate the repository ecosystem. The goal is to integrate repositories into a federated system for better accessibility and interoperability, ensuring long-term data availability and sustainability. TA4 (Metadata, Data Standards, and Publication Standards) focuses on developing and promoting new data and metadata standards in an international community process. This includes applying ontologies to create a semantic foundation for linking research data, making it machine-readable and enabling knowledge graphs. TA5 (Community and Training) is dedicated to fostering a cultural shift towards digital chemistry through continuous engagement, collecting requirements, and providing extensive training and support through workshops and open education resources. It will promote FAIR-compliant machine learning applications, embedding RDM into academic curricula to ensure future scientists are well-versed in these practices. TA6 (Synergies and Cross-Cutting Topics) aims to enhance collaboration across NFDI consortia and beyond. This includes developing ontologies, terminology services, the search service, and other cross-cutting solutions, integrating these developments into existing infrastructure, enabling interdisciplinary data harmonisation and fostering machine learning applications. KW - Research Data Management KW - FAIR KW - Chemistry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648540 DO - https://doi.org/10.3897/rio.11.e177037 SN - 2367-7163 VL - 11 SP - 1 EP - 100 PB - Pensoft Publishers AN - OPUS4-64854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Danischewski, Julia A1 - Molnar, Brian A1 - Riedel, Jens A1 - Shelley, Jacob T1 - Manipulation of Gaseous Ions with Acoustic Fields at Atmospheric Pressure N2 - The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions (“nodes”) while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases. KW - Ion mobility spectrometry KW - Acoustic KW - Mass spectrometry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600704 DO - https://doi.org/10.1021/jacs.4c01224 SP - 1 EP - 6 PB - ACS Publications AN - OPUS4-60070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. A. T1 - Laser Ablation Secondary Electrospray Ionization for In Situ Mass Spectrometric Interrogation of Acoustically-Levitated Droplets N2 - The composition of acoustically levitated droplets was probed by a novel combination of mid-IR laser evaporation and subsequent postionization via secondary electrospray ionization. The combination of microliter samples and subnanoliter sampling provided time-resolved interrogation of droplets and allowed for a kinetic investigation of the laser-induced release of the analyte, which was found to strongly depend on the analytes. The observed substancespecific delayed release of the analytes permitted baseline-separated discrimination of the analytes, ideal for the study of complex samples. The additionally applied postionization scheme was found to enable efficient detection of small volatile compounds as well as peptides. The detection of small molecules and peptides occurred under very different sampling geometries, pointing to two distinct underlying ionization mechanisms. Overall, our results suggest that the experimental setup presented in this study can serve as a widely applicable platform to study chemical reactions in acoustically levitated droplets as model reactors. KW - Acoustic levitation KW - Mass spectrometry KW - Electrospray KW - Laser ablation PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c03800 SN - 0003-2700 VL - 2022 SP - 1 EP - 5 PB - ACS Publications CY - Washington AN - OPUS4-56531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xue, Boyang A1 - Wang, Zhangjun A1 - Zhu, Tao A1 - Gu, Yezhen A1 - Sun, Weihong A1 - Chen, Chao A1 - Li, Zhigang A1 - Riedel, Jens A1 - You, Yi T1 - High repetition-rate laser-induced breakdown spectroscopy combined with two-dimensional correlation method for analysis of sea-salt aerosols N2 - Laser-induced breakdown spectroscopy (LIBS) offers a tantalizing glimpse into real-time, on-the-spot aerosol analysis. Yet, the reliance on traditional lasers, with their limitations in energy and frequency, hampers optimal sample handling, dissociation, and excitation. To address those challenges, we propose a novel tactic: utilize a high repetition-rate (rep.-rate) laser with low pulse energy in combination with the two-dimensional correlation (2D-corr.) technique for sea-salt aerosols analyses. By examining the emission patterns from both the laser pulse train and individual pulses, we recognize distinctive analyte-specific rep.-rate responses, which allowed spectral reconstruction of analytes, avoiding background interferences. This discovery enabled the rep.-rate modulation for a 2D-corr. spectroscopy workflow. Consequently, we successfully differentiated between particle-related and air-species-related spectral components, obviating expensive spectrometers or intensified image detectors. For instance, the Na I at 589 nm stemming from aerosols exhibited an entirely different correlation contribution compared to O I at 777 nm, resulting in reconstructed clean aerosol-spectra without spectral peaks originated from air species. This 2D-corr. aerosol LIBS approach shows promising analytical potential streamlining aerosol particle analysis. KW - LIBS KW - Aerosol PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613392 DO - https://doi.org/10.1016/j.sab.2024.107048 SN - 0584-8547 VL - 221 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-61339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Xunyu A1 - Riedel, Jens A1 - You, Yi T1 - Spectrally resolved lithium isotope quantification through high-resolution spatial heterodyne spectrometry N2 - Isotope ratio determination of lithium is increasingly important in fields ranging from geochemistry to battery diagnostics. While mass spectrometry remains the gold standard, it is costly, cumbersome, and incompatible with portable or inline implementations. Optical emission spectroscopy presents an appealing alternative. However, it is traditionally limited by insufficient spectral resolution or resolving power to separate lithium isotope emissions due to their generalized designs for a wide spectral range; this often requires overly complicated algorithms to overcome the instrumental drawbacks. (79) Results Here, we report a high-resolution optical method for lithium isotope quantification using a custom-built spatial heterodyne spectrometer (SHS) combined with a reduced-pressure glow discharge source. This configuration yielded a resolving power of 189,000 and enabled baseline resolution of lithium d-line emission features even without the need for preliminary data processing. Despite the inherent low sensitivity of SHS, a detection limit of 30 pmol was achieved using a standard industrial camera. To improve quantitative accuracy, we introduced a deconvolution-based spectral lineshape recovery technique alongside a bootstrapping-based error propagation strategy. These methods facilitated robust isotope ratio calibration using both peak-height and peak-area metrics. The SHS platform additionally enabled the determination of relative transition probabilities, suggesting the feasibility of calibration-free operation. This work demonstrates the practical viability of SHS for high-specificity, high-resolution lithium isotope analysis. The approach is compact, potentially field-deployable, and adaptable to other elements with optically resolvable isotope shifts, offering a route toward accessible and calibration-free optical isotopic analyses. KW - SHS KW - Isotope KW - High-resolution spectroscopy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635139 DO - https://doi.org/10.1016/j.aca.2025.344329 SN - 1873-4324 VL - 1368 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohan, M. A1 - Prochazka, D. A1 - You, Yi A1 - Riedel, Jens A1 - Gornushkin, Igor A1 - Rocnakova, I. A1 - Papula, M. A1 - Porízka, P. A1 - Kaizer, J. T1 - Investigating plasma morphology at material boundaries under varying ambient pressures N2 - Laser-Induced Breakdown Spectroscopy (LIBS) is a widely used technique for elemental analysis. The analysis of the obtained LIBS spectra generally assumes plasma homogeneity. However, using focused laser beams for interrogation, LIBS probes materials on the microscale and is, thus, prone to artefacts from sample heterogeneities on the micrometer scale. An ablation at a material boundary of two matrices may result in a significant inhomogeneity in the plasma plume, which can severely impact the accuracy of quantitative analysis. Since this propagation of the surface morphology into the plasma plume is driven by the plasma expansion, its final impact is strongly pressure dependent. This study examines the influence of varying ambient pressures (7–1000 mbar) on plasma morphology, spectral characteristics, and key plasma properties such as electron number density at a well-defined Cu–Sn boundary, in comparison with the results obtained using homogeneous alloys. Several approaches of plasma imaging with bandpass filters, spectroscopy, and Radon transform-based 3D reconstruction were employed to analyze elemental distribution, signal-to-noise (SNR) and signal-to-background (SBR) ratios, as well as electron number densities. The 3D reconstructions revealed a pronounced plasma asymmetry for the ablation at the material boundary, in contrast to the near-axial symmetry observed for the ablation of homogeneous alloys. At lower pressures, this distinct elemental separation in plasma persisted, while higher pressures led to an increased collisional mixing and homogenization. SNR and SBR were consistently lower for ablation at the boundary compared to homogeneous samples. These findings highlight how boundary ablation contributes to plasma inhomogeneities in LIBS analysis of heterogeneous materials and emphasize the need to account for these effects when using LIBS for elemental mapping of fine heterogeneous structures. KW - Laser-induced breakdown spectroscopy KW - Plasma inhomogeneity KW - Plasma tomography KW - Radon transform KW - Material boundaries KW - Ambient pressure effects PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634777 DO - https://doi.org/10.1016/j.talanta.2025.128377 SN - 1873-3573 VL - 295 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Xue, Boyang A1 - Riedel, Jens T1 - Enhancement of LIBS plasma in air with organic solvent vapors N2 - Laser-induced breakdown spectroscopy (LIBS) offers versatile, field-deployable elemental analysis; however, compact, high-repetition-rate nanosecond laser systems typically face constraints in power consumption and size, often compromising emission intensity and thus analytical performance. We demonstrate a significant improvement in LIBS signals through the controlled introduction of common organic solvent vapors into a sheath gas, with a diode-pumped solid-state laser (1064 nm, 2–28 kHz repetition rate, 450–600-μJ pulse energy). Optical and acoustic diagnostics reveal up to ca. 40-fold enhancement of the N II emission line at 567 nm when ambient air serves as the analyte. Maximal enhancement occurs at intermediate repetition rates of ca. 15 kHz, particularly at pulse energies approaching the optical breakdown threshold; this observation suggests a viable strategy for operating LIBS at lower pulse energies and higher repetition rates. Enhancement effects scale jointly with both vapor pressure and ionization energy of the organic species, with acetone and toluene markedly outperforming methanol and isopropanol. These findings provide a rational foundation for significantly improving the analytical performance of portable LIBS instruments without exceeding platform-specific constraints. KW - LIBS PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653758 DO - https://doi.org/10.1016/j.sab.2025.107309 SN - 0584-8547 VL - 236 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-65375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wittwer, Philipp A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Feldmann, Ines A1 - Simon, Franz-Georg T1 - Less Is More: Influence of Cross-Linking Agent Concentration on PFOS Adsorption in Chitosan N2 - As a result of the continuous use of persistent per- and polyfluoroalkyl substances (PFAS), e.g., in aviation firefighting foams, contamination with PFAS has been found in soil, groundwater, and surface water around thousands of industrial and military installations. Due to their harmful (environmental) potential, further dispersion in the environment needs to be stopped, which can be achieved by appropriate absorption materials. In this work, the influence of the cross-linking agent epichlorohydrin (ECH) concentration on the perfluorooctanesulfonic acid (PFOS) adsorption capacity of chitosan gel was investigated. It was found that higher ECH concentration during the cross-linking step decreases the PFOS adsorption capacity of the cross-linked chitosan gel from 0% to 4% ECH solution by about 15%. Using a concentration of 1%, ECH resulted still in an acid-stable material, and a maximum PFOS loading capacity of 4.04 mmol/g was obtained, one of the highest described in the literature. Furthermore, we used a rapid small-scale column test to compare the PFOS adsorption capacity of chitosan and activated carbon, each in both milled and unmilled form. Unmilled chitosan showed the highest PFOS adsorption capacity considering adsorption material dry masses (>0.9 and <0.4 mmol/g for both types of chitosan and activated carbon, respectively). Milled activated carbon proved to be the better adsorption material, considering the fixed volume of the adsorber (>99.9% PFOS adsorbed). Overall, the cross-linking agent concentration in chitosan is a crucial factor influencing its PFOS absorption potential. Our results feature cross-linked chitosan as an effective economic and ecologic alternative for PFOS adsorption in aqueous solutions. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618406 DO - https://doi.org/10.3390/app142311145 VL - 14 IS - 23 SP - 1 EP - 13 PB - MDPI AN - OPUS4-61840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Urban, Klaus A1 - Ackerhans, C. A1 - Gorbushina, Anna T1 - Analysis of Carbon and Nitrogen from Atmospheric Sources by Bulk Deposition Sampling at various locations in Germany N2 - Atmospheric deposition of particulate matter is an important indicator of air pollution and a significant factor in material surface fouling. The elemental composition of this nutrient-containing dust depends largely on the exposure region and time as well as on climate. Therefore, in this paper we report an analysis of atmospheric pollutions with a self-made low-cost bulk deposition sampler directed at sampling deposition via air transport and rainfall. We used the device in diverse environments - thus comparing an urban region, an area surrounded by forest and an area mainly dominated by agriculture. The total organic carbon (TOC) and total nitrogen (TN) amounts were selected as indicator parameters and analyzed in a biweekly rhythm for three and a half and two years, respectively. The TOC value responded to particulate matter in the urban area, especially significant were the influences of the New Year's firework in urban and pollen in the rural forest area. In contrast, the TN value was more under the influence of the nitrogen emissions in the agriculture-dominated area. However, the TN value did not correlate with the NOx values in the urban area because the atmospheric nitrogen emissions in the city might originate from various emission sources. Summarizing, the TOC and TN values of the self-made low-cost bulk deposition sampler were in good agreement with environmental events of their immediate surrounding. Moreover, the selected containers and sampling procedures are universally applicable to monitor and analyze organic as well as inorganic parameters (e.g. metal ions) of atmospheric deposition. KW - Passive sampling KW - Biomonitoring KW - Air Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609373 DO - https://doi.org/10.1016/j.envadv.2024.100583 SN - 2666-7657 VL - 17 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, C. A1 - Inutan, E. D. A1 - Chen, J. L. A1 - Mukeku, M. M. A1 - Weidner, Steffen A1 - Trimpin, S. A1 - Ni, C.-K. T1 - Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory N2 - Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices. KW - Ionization KW - MALDI-TOF MS KW - Mechanism PY - 2021 DO - https://doi.org/10.1002/rcm.8382 VL - 35 IS - 51 SP - e8382 PB - John Wiley & Sons AN - OPUS4-49209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - Low Molar Mass Cyclic Poly(L-lactide)s: Separate Transesterification Reactions of Cycles and Linear Chains in the Solid State N2 - L-Lactide (LA) was polymerized with neat tin(II) 2-ethylhexanoate (SnOct2) in toluene at 115 °C at low concentration with variation of the LA/Cat ratio. Cyclic polylactides (cPLAs) with number average molecular weights (Mn) between 7 000 and 17 000 were obtained. MALDI-TOF mass spectrometry also revealed the formation of a few percent of linear chains. Crystalline cPLAs with Mn around 9 000 and 14 000 were annealed at 140 °C in the presence of ScOct2 or dibutyl-2-stanna-1,3-dithiolane (DSTL). Simultaneously, crystallites of extended linear chains and crystallites of extended cycles were formed regardless of the catalyst, indicating that transesterification reaction proceeded different for linear chains and for cycles, governed by thermodynamic control. The formation of extended chain crystallites with low dispersity indicates the existence of symproportionation of short and long chains. A complementary experiment was carried out with a PLA ethyl ester composed mainly of linear chains with a small fraction of cycles KW - Polylactide KW - MALDI-TOF MS KW - Annealing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606228 DO - https://doi.org/10.1039/D4SM00567H SN - 1744-6848 SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Transformation of poly(L-lactide) crystals composed of linear chains into crystals composed of cycles N2 - A poly(L-lactide) with a trifluoroethyl ester end group and an average degree of polymerization (DP) of 50 was synthesized by ROP of L-lactide initiated with trifluoroethanol. Small-angle X-ray scattering (SAXS) in combination with differential scanning calorimetry (DSC) measurements revealed an average crystal thickness of 13 nm, corresponding to 45 repeat units. This suggests that most crystallites were formed by extended PLA chains, and both flat surfaces were covered by CF3 groups. The crystalline PLAs were annealed at 140 or 160 °C in the presence of two catalysts: tin(II) 2-ethylhexanoate, (SnOct2) or dibutyltin bis(pentafluorophenoxide) (BuSnPhF). The chemical reactions, such as polycondensation and cyclization, proceeded in the solid state and were monitored by matrix-assisted laser desorption/ionization time-offlight (MALDI TOF) mass spectrometry and gel permeation chromatography (GPC) measurements. Under optimal conditions a large fraction of linear chains was transformed into crystallites composed of extended cycles. Additionally, MALDI TOF MS analysis of GPC fractions from samples annealed for 28 or 42 days detected chain elongation of the linear species up to a factor of 20. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Transesterification PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597250 DO - https://doi.org/10.1039/D3PY01370G SN - 1759-9954 VL - 15 IS - 12 SP - 1173 EP - 1181 PB - Royal Society for Chemistry AN - OPUS4-59725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About alcohol-initiated polymerization of glycolide and separate crystallization of cyclic and linear polyglycolides N2 - Alcohol-initiated polymerizations of glycolide (GL) catalyzed by tin(II) 2-ethylhexanoate (SnOct2) were carried out in bulk with variation of GA/In ratio, temperature and time. Due to a rather strong competition of cyclization polyglycolide (PGA) free of cycles were never obtained. When the cyclic catalysts 2,2-dibutal-2-stanna − 1,3-dithiolane (DSTL) or 2-stanna 1,3-dioxo-4,5,6,7 bibenzepane (SnBiph) were used in combination with 1,4-butanediol the influence of cyclization was even stronger. Furthermore, the degrees of polymerization were higher than the GA/alcohol ratio due to rapid polycondensation in the solid state. At 160 °C or below, the matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra indicated separate crystallization of low molar mass cyclic and linear PGAs from the same reaction mixture (also observed for poly(L-lactide)s). KW - MALDI TOF MS KW - Polyglycolide KW - Ring opening polymerization KW - Cyclization KW - Crystallization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607282 DO - https://doi.org/10.1016/j.polymer.2024.127440 SN - 0032-3861 VL - 309 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Andreas A1 - Weidner, Steffen A1 - Kricheldorf, Hans R. T1 - Star-shaped poly(l-lactide)s based on pentaerythritol: About crystallization and polycondensation plus disproportionation and ring formation in the solid state N2 - Star-shaped poly( L-lactide)s (s-PLAs), were prepared by ring-opening polymerization of with pentaerythritol and catalyzed by tin(II) 2-ethylhyexanoate (SnOct out in bulk at either 120 ◦ C or 160 ◦ L-lactide (LA) initiated 2 ). Two small series of ROPs were carried C with variation of the LA/initiator ratio. Matrix-assisted laser desorption/ ionization time-of-flight (MALDI-TOF) mass spectra revealed traces of cycles in 120 ◦ C samples only at low initiator/catalyst ratios. In contrast, higher fractions of cycles were detected in samples prepared at 160 C, suggesting a "back-biting" origin. The influence of arm length and thermal history on crystallinity was investigated by differential scanning calorimetry (DSC) and wide-angle x-ray scattering (WAXS). It was shown that annealing increased the melting temperature (T ◦ ◦ m ) and crystallinity. However, annealing at 140 ◦ C for 14 d also caused significant solid-state transesterification. In addition, crystallites composed of s-PLAs with extended arms and, simultaneously, crystallites composed exclusively of extended rings were formed, identified by their typical "sawtooth" pattern in the MALDI mass spectra. Small angle x-ray scattering (SAXS) indicated that the crystal thickness was lower than that of linear PLAs annealed under identical conditions, but increased upon annealing at 140 C. KW - MALDI-TOF MS KW - Polylactide KW - Crystallisation KW - AStar-shaped polymers PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636832 DO - https://doi.org/10.1016/j.polymer.2025.128709 SN - 0032-3861 VL - 334 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-63683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - H2O-Initiated Polymerization of L-Lactide N2 - Water-initiated ring-opening polymerizations (ROPs) of L-lactide (LA) were performed in bulk at 140 °C, whereupon 11 different salts or complexes of low-toxic metal ions such as tin (II), Zn(II), Zr(IV), and Bi(III) were used as catalysts. Only four catalysts gave satisfactory results despite a long reaction time (24 h). The influence of the temperature was studied with tin (II) 2-ethylhexanoate (SnOct2), dibutyltin oxide (Bu2SnO), and zinc bis-acetylacetonate (Zn(acac)2) and zirconium acetylacetonate (Zr(acac)4). With SnOct2, Bu2SnO and Zr(acac)4 the time was varied at 140 °C to compare their reactivity. Furthermore, two series of ROPs were carried out with variation of the LA/H2O ratio to verify the control of the molecular weight by the monomer-initiator ratio. Bi- or tri-modal molecular weight distributions (MWD) were found for most of the ROPs and bimodal melting endotherms in the differential scanning calorimetry (DSC) heating traces. The thickness and dependence of the 3D packing of the crystallites were monitored by small-angle X-ray scattering (SAXS) measurements. KW - MALDI-TOF MS KW - Polylactide KW - Ring-opening polymerization KW - Crystallization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628761 DO - https://doi.org/10.1007/s10924-025-03565-w SN - 1572-8919 VL - 33 IS - 6 SP - 2843 EP - 2857 PB - Springer Science and Business Media LLC CY - New York, NY AN - OPUS4-62876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Scholz, Philipp A1 - Jung, Christian A1 - Weidner, Steffen T1 - Thermo-Desorption Gas Chromatography-Mass Spectrometry for investigating the thermal degradation of polyurethanes N2 - Thermo-Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to investigate the thermal degradation of two different polyurethanes (PU). PU samples were heated at different heating rates and the desorbed products were collected in a cold injection system and thereafter submitted to GC-MS. Prospects and limitations of the detection and quantification of semi-volatile degradation products were investigated. A temperature dependent PU depolymerization was found at temperatures above 200 °C proved by an increasing release of 1,4-butanediol and methylene diphenyl diisocyanate (MDI) representing the main building blocks of both polymers. Their release was monitored quantitatively based on external calibration with authentic compounds. Size Exclusion Chromatography (SEC) of the residues obtained after thermodesorption confirmed the initial competitive degradation mechanism indicating an equilibrium of crosslinking and depolymerization as previously suggested. Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry of SEC fractions of thermally degraded PUs provided additional hints on degradation mechanism. KW - Thermo-desorption KW - Mass spectrometry KW - Polyurethanes KW - Thermal degradation PY - 2023 DO - https://doi.org/10.1039/D3AY00173C SN - 1759-9660 SP - 1 EP - 6 PB - Royal Society for Chemistry AN - OPUS4-57307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Scheliga, Felix A1 - Kricheldorf, Hans R. T1 - Polycondensation, Cyclization and Disproportionation of Solid Poly(L-lactide) Trifluoroethyl Esters and the Simultaneous Formation of Extended Chain Crystals and Extended Ring Crystals N2 - Two poly(L-lactide)s (PLAs) with a degree of polymerization (DP) of 20 or 100 were prepared by trifluoroethanol-initiated ring-opening polymerization (ROP) catalyzed by tin(II) 2-ethyl hexanoate (SnOct2). These PLAs were annealed at 140 ◦C or at 160 ◦C in the presence of SnOct2, and the changes in topology and molecular weight distribution (MWD) were monitored by matrix-assisted laser desorption/ionization time-of flight (MALDI TOF) mass spectrometry and gel permeation chromatography (GPC). For the PLA with a DP 20, the main reaction was polycondensation combined with higher dispersities. In the case of the DP 100, PLA polycondensation was combined with disproportionation and the formation of a new MWD maximum around m/z 3500. In addition, extensive cyclization occurred, and the resulting cyclic PLAs crystallized separately from the linear chains in the form of extended ring crystals. These results also suggest that both extended chain and extended ring crystals posses the same crystal thickness as a result of thermodynamically controlled transesterification in the solid state. KW - Polycondensation KW - MALDI KW - Polylactide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-616441 DO - https://doi.org/10.1016/j.polymer.2024.127800 VL - 315 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-61644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenhagen, Jana A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Quantitative MALDI-TOF Mass Spectrometry of Star-Shaped Polylactides Based on Chromatographic Hyphenation N2 - The end groups of three- and four-arm star-shaped polylactides (PLA) with trimethylolpropane and pentaerythritol core structures were functionalized with acetic acid. Reaction products with different degrees of functionalization were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Additional gradient elution liquid adsorption chromatography (GELAC) measurements were performed to determine the degree of functionalization. This technique enabled clear separation and sufficient quantification of the formed species. These chromatographic data could be used inversely to quantify mass spectrometric results, which are usually biased by the unknown ionization probabilities of different polymer end group structures. Our results showed that, in this particular case, the peak intensity in the MALDITOF mass spectra can be used to semiquantitatively determine the degree of functionalization in incompletely functionalized multiarm PLA. KW - Polylactides KW - MALDI-TOF-MS KW - Gradient elution liquid adsorption chromatography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625292 DO - https://doi.org/10.1021/jasms.4c00491 SN - 1879-1123 SP - 1 EP - 9 PB - American Chemical Society (ACS) AN - OPUS4-62529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Polycondensation of L-lactic acid: a deeper look into solid state polycondensation N2 - L-Lactic acid (LA) was condensed in the presence of SnCl2 or 4-toluenesulfonic acid (TSA) at 140 °C, and chain growth without cyclization was observed. In addition, poly(L-lactic acid)s (PLAs) with a degree of polymerization (DP) of 25, 50 or 100 were prepared by water-initiated ring-opening polymerization (ROP). These PLAs were annealed in the solid state at 140 °C and 160 °C in the presence of tin(II) 2-ethylhexanoate (SnOct2, SnCl2 or TSA). The changes in the molar mass distribution and in the topology were characterized by means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and size exclusion chromatography (SEC). With increasing time, fewer side reactions caused higher molar masses and increasing fractions of cyclic polylactides (cPLA) were obtained. Their “saw tooth” pattern in the MALDI-TOF mass spectra indicated the formation of extended ring crystallites in the solid state. TSA was the most active catalyst and caused fewer side reactions than SnCl2, which was the least reactive catalyst. Acetylation of the CH-OH end groups hindered polycondensation and prevented the formation of cPLAs. Reaction mechanisms will be discussed. KW - MALDI-TOF MS KW - Polycondensation KW - Polylaktide KW - Solid state PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625271 DO - https://doi.org/10.1039/d4py01191k SN - 1759-9962 SP - 1 EP - 9 PB - Royal Society of Chemistry (RSC) AN - OPUS4-62527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rösler, Alexander A1 - Weidner, Steffen A1 - Klamroth, Tillmann A1 - Müller, Axel HE A1 - Schlaad, Helmut T1 - Kinetics of anionic polymerization of β‐myrcene in hydrocarbon solvents N2 - AbstractThe kinetics of anionic polymerization of β‐myrcene initiated by sec‐butyllithium were examined in saturated and unsaturated hydrocarbon solvents, i.e. cyclohexane, cyclohexene, 4‐vinylcyclohexene and dl‐limonene. Polymerizations usually proceeded in a living manner, i.e. in the absence of termination and chain transfer reactions, in all solvents, to produce well‐defined polymyrcenes with high content (85%) of cis‐1,4 units. However, polymyrcenyllithium chains exhibited limited long‐term stability in 4‐vinylcyclohexene solution, most probably due to chain transfer to solvent. Reaction orders with respect to the concentration of active chains were found to be one‐quarter in cyclohexane increasing to one‐half in unsaturated solvents, indicating that the polymyrcenyllithium chains are present as tetrameric or dimeric associates, respectively. Apparent activation energies were found to be 81 kJ mol−1 in cyclohexane and 77 kJ mol−1 in dl‐limonene solution, which are close to the values obtained by quantum chemical calculations. © 2025 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. KW - Myrcene KW - Anionic polymerization KW - Reaction order KW - Activation energy KW - Microstructure KW - Quantum chemical calculation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636840 DO - https://doi.org/10.1002/pi.6772 SN - 0959-8103 SP - 1 EP - 8 PB - Wiley AN - OPUS4-63684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592934 DO - https://doi.org/10.1039/d3py01232h SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About Polycondensation, Disproportionation, and Cyclization of Acetylated Poly(L-Lactide) Esters N2 - L-lactide (LA) is polymerized with ethyl L-lactate or trifluoroethanol as initiators (LA/In = 30/1), and the resulting poly(L-lactide) esters are acetylated with acetic anhydride. The acetylated PLA esters are mixed with SnOct2, dibutyltin bis(4-chlorophenoxide), or dibutyltin bis(pentafluorophenoxide) in solution and crystallized at 120 °C. The doped crystals are annealed at 140 °C or at 160 °C for 7, 14, and 28 days, and the chemical modifications that occurred in the solid state are monitored by matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) measurements. All catalysts promoted polycondensation, while no significant formation of cycles is observed. However, in the presence of SnOct2, disproportionation of chains occurred upon annealing at 120 or 140 °C, and crystallites consisting of extended chains with Mn values ≈3500 – 3600 and low dispersities (Ð < 1.5) are formed. KW - MALDI-TOF MS KW - Polycondensation KW - Polylactides KW - Transesterifcation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630349 DO - https://doi.org/10.1002/macp.202400175 SN - 1521-3935 VL - 225 IS - 19 PB - Wiley VHC-Verlag AN - OPUS4-63034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Syntheses of cyclic polylactides and the problem of catenane formation N2 - Cyclic poly(L-lactide)s (PLAs) were prepared in bulk either by ring-expansion polymerization (REP) or by ring-opening polymerization (ROP) with simultaneous polycondensation (ROPPOC). In contrast to REP the latter method involves formation of linear chains and thus, may involve formation of polydisperse catenanes that affect crystallization. The reprecipitated PLAs were annealed at 120 °C and compared with regard to melting temperature (Tm) and melting enthalpy (ΔHm). For similar molar masses the PLAs prepared by REP and ROPPOC had almost identical Tm's and crystallinities. Furthermore, the influence of REP and ROPPOC catalysts on the morphology of the virgin reaction products was compared. KW - MALDI-TOF MS KW - Catenane KW - Polylactide PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625061 DO - https://doi.org/10.1039/d4ra08683j VL - 15 IS - 5 SP - 3686 EP - 3692 PB - RSC AN - OPUS4-62506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oksal-Kilinc, Sefine A1 - Altmann, Korinna A1 - Seiwert, Bettina A1 - Reemtsma, Thorsten A1 - Ruess, Liliane T1 - Grinding method and oxidative aging modulate the impact of tire wear microplastics on the reproduction of the nematode C. elegans N2 - Rationale Tire abrasion is one of the largest sources of microplastic in aquatic and terrestrial environments. Despite this fact, research on tire wear microplastic (TWP) and its effects on soil ecosystems is scarce, especially regarding natural weathering processes. This leaves a large knowledge gap on the interactions of TWP with soil biota. Methodology Cryo-milled tire tread (CMTT) and diamond-ground tire tread (DGTT) were artificially weathered through dry ozone treatment and heat exposure. Particles were analyzed via scanning electron microscopy, particle size distribution, and shape characterization. TWP leachate composition was examined using liquid chromatography–mass spectrometry. The impact on the reproduction of the nematode Caenorhabditis elegans, a widely used toxicological model, was tested for leachate concentration, exposure duration and TWP aging status, using offspring per adult as the endpoint. Results The comminution method significantly influenced TWP particle size distribution, with diamond grinding yielding smaller particles and a more structured surface morphology than cryo-milling. Aging with ozone (180 min) and heat (20 min at 100 °C) reduced DGTT particle sizes by 27-58%, but not in CMTT. Additionally, aging increased carboxylic functional groups and led to a brittle structure in both TWP types. Leachate composition varied with comminution method and aging. Benzothiazole, N-Cyclo-N-phenylurea, and aniline were more abundant in pristine and aged CMTT and aged DGTT. Diphenylguanidine had the highest concentration in all leachates. Aged TWP leachates, regardless of comminution, had significant toxic effects on C. elegans. Leachate from pristine CMTT was more toxic than from pristine DGTT. Nematode offspring correlated negatively with ozone exposure duration in aged DGTT. Tests with aged CMTT leachate showed even short-term exposure reduced offspring numbers. Discussion The results underscore the importance of oxidative and mechanical weathering in TWP toxicity and challenge the use of pristine particles in toxicological assays for risk assessment in the natural environment. KW - Microplastics KW - Tire abrasion KW - Environment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654672 DO - https://doi.org/10.1071/EN25051 SN - 1448-2517 VL - 23 IS - 2 SP - 1 EP - 16 PB - CSIRO Publishing AN - OPUS4-65467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Eisentraut, Paul A1 - Altmann, Korinna T1 - One Year Observation of Microplastic Concentrations in the River Rhine N2 - In recent years, the quantification of microplastics (MP) in aquatic environments has gained increasing attention, particularly regarding their environmental distribution and potential exposure levels. Environmentally relevant exposure data are still essential for a realistic risk assessment of the harmful health potential of microplastics in freshwater systems. This study addresses a large data set of MP concentrations analyzed and processed under statistical aspects and provides mass concentrations as well as associated size fractions of the detected MP. Over a 12 month period, samples were collected at three locations and analyzed across three particle size fractions (100−500 μm, 50−100 μm, and 10−50 μm) using thermalextraction desorption-gas chromatography/mass spectrometry (TED-GC/MS). The most prevalent polymers identified were polyethylene (PE), polypropylene (PP), polystyrene (PS), styrene−butadiene rubber (SBR), and natural rubber (NR). Statistical analyses, including principal component and cluster analysis, revealed size-dependent patterns,minor seasonal variation and spatial variations. These findings are particularly significant for ecotoxicological research and regulatory development, especially regarding tire abrasion a rarely quantified but potentially harmful MP source. The study contributes aluable data for future environmental monitoring and supports EU directives on wastewater and drinking water quality KW - TED-GC/MS KW - Microplastics KW - Environment KW - Monitoring KW - Reference data PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654669 DO - https://doi.org/10.1021/acsestwater.5c00530 SN - 2690-0637 SP - 1 EP - 10 PB - American Chemical Society (ACS) AN - OPUS4-65466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartczak, Dorota A1 - Sikora, Aneta A1 - Goenaga-Infante, Heidi A1 - Altmann, Korinna A1 - Drexel, Roland A1 - Meier, Florian A1 - Alasonati, Enrica A1 - Lelong, Marc A1 - Cado, Florence A1 - Chivas-Joly, Carine A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Rossi, Andrea Mario A1 - Pröfrock, Daniel A1 - Wippermann, Dominik A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Booth, Andy M. A1 - Sørensen, Lisbet A1 - Igartua, Amaia A1 - Wouters, Charlotte A1 - Mast, Jan A1 - Barbaresi, Marta A1 - Rossi, Francesca A1 - Piergiovanni, Maurizio A1 - Mattarozzi, Monica A1 - Careri, Maria A1 - Caebergs, Thierry A1 - Piette, Anne-Sophie A1 - Parot, Jeremie A1 - Giovannozzi, Andrea Mario T1 - Multiparameter characterisation of a nano-polypropylene representative test material with fractionation, light scattering, high-resolution microscopy, spectroscopy, and spectrometry methods N2 - Reference and quality control materials with comparable physicochemical properties to nanoplastic contaminants present in environmental and food nanoplastics are currently lacking. Here we report a nanoplastic polypropylene material prepared using a top-down approach involving mechanical fragmentation of larger plastics. The material was found to be homogeneous and stable in suspension and has been characterised for average particle size, size distribution range, particle number concentration, polypropylene mass fraction and inorganic impurity Content using a wide range of analytical methods, including AF4, cFFF, PTA, (MA)DLS, MALS, SEM, AFM, TEM, STEM, EDS,Raman, ICP-MS and pyGC-MS. The material was found to have a broad size distribution, ranging from 50 nm to over 200 nm, with the average particle size value dependent on the technique used to determine it. Particle number concentration ranged from 1.7–2.4 × 1010 g−1 , according to PTA. Spectroscopy techniques confirmed that the material was polypropylene, with evidence of aging due to an increased level of oxidation. The measured mass fraction was found to depend on the marker used and ranged between 3 and 5 μg g−1 . Inorganic impurities such as Si, Al, Mg, K, Na, S, Fe, Cl and Ca were also identified at ng g−1 levels. Comparability and complementarity across the measurement methods and techniques is also discussed. KW - Polypropylene KW - Nanoplastics KW - Analytics KW - Reference material KW - Scattering methods PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654680 DO - https://doi.org/10.1039/D5EN00917K SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kossatz, Philipp A1 - Mezhov, Alexander A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Assessing the Applicability of Lanthanide-Based Upconverting Nanoparticles for Optically Monitoring Cement Hydration and Tagging Building Materials N2 - Chemically stable, lanthanide-based photon upconversion micro- and nanoparticles (UCNPs) with their characteristic multicolor emission bands in the ultraviolet (UV), visible (vis), near-infrared (NIR), and short-wave infrared (SWIR) arepromising optical reporters and barcoding tags. To assess the applicability of UCNPs for the monitoring of early stage cement hydration processes and as authentication tags for cementitious materials, we screened the evolution of the luminescence of Selfmade core-only NaYF4:Yb,Er UCNPs and commercial μm-sized Y2O2S:Yb,Er particles during the first stages of cement hydration, which largely determines the future properties of the hardened material. Parameters explored from the UCNP side included particle size, morphology, surface chemistry or coating, luminescence properties, and concentration in different cement mixtures. From the cement side, the influence of the mineral composition of the cement matrix was representatively examined for ordinary Portland cement (OPC) and its constituents tricalcium aluminate (C3A), tricalcium silicate (C3S), and gypsum at different water to cement ratios. Based on reflection and luminescence measurements, enabling online monitoring, which were complemented by XRD and isothermal heat-flow calorimetric measurements to determine whether the incorporation of these particles could impair cement hydration processes, well suited lanthanide particle reporters could be identified as well as application conditions. In addition, thereby the reporter influence on cement hydration kinetics could be minimized while still preserving a high level of information content. The best performance for the luminescence probing of changes during early stage cement hydration processes was observed for 25 nm-sized oleate (OA)-coated UCNPs added in a concentration of 0.1 wt %. Higher UCNP amounts of 1.0 wt % delayed cement hydration processes size- and surface coatingspecifically in the first 24 h. Subsequent luminescence stability screening studies performed over a period of about one year support the applicability of UCNPs as optical authentication tags for construction materials. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Quantum yield KW - NIR KW - Mechanism KW - Characterization KW - XRD KW - Calorimetry KW - Advanced material KW - Cement KW - Monitoring KW - Surface KW - Size KW - Lifetime KW - Barcode KW - Lanthanide KW - Upconversion KW - Encoding KW - Method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638318 DO - https://doi.org/10.1021/acsomega.5c02236 SN - 2470-1343 VL - 10 IS - 29 SP - 31587 EP - 31599 PB - ACS Publications CY - Washington, DC AN - OPUS4-63831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - H2O-Initiated Polymerization of L-Lactide N2 - Water-initiated ring-opening polymerizations (ROPs) of L-lactide (LA) were performed in bulk at 140 °C, whereupon 11 different salts or complexes of low-toxic metal ions such as tin (II), Zn(II), Zr(IV), and Bi(III) were used as catalysts. Only four catalysts gave satisfactory results despite a long reaction time (24 h). The influence of the temperature was studied with tin (II) 2-ethylhexanoate (SnOct2), dibutyltin oxide (Bu2SnO), and zinc bis-acetylacetonate (Zn(acac)2) and zirconium acetylacetonate (Zr(acac)4). With SnOct2, Bu2SnO and Zr(acac)4 the time was varied at 140 °C to compare their reactivity. Furthermore, two series of ROPs were carried out with variation of the LA/H2O ratio to verify the control of the molecular weight by the monomer-initiator ratio. Bi- or tri-modal molecular weight distributions (MWD) were found for most of the ROPs and bimodal melting endotherms in the differential scanning calorimetry (DSC) heating traces. The thickness and dependence of the 3D packing of the crystallites were monitored by small-angle X-ray scattering (SAXS) measurements. KW - MALDI-TOF MS KW - Polylactide KW - Crystallization KW - Ring-opening polymerization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636852 DO - https://doi.org/10.1007/s10924-025-03565-w SN - 1566-2543 VL - 33 IS - 6 SP - 2843 EP - 2857 PB - Springer Science and Business Media LLC AN - OPUS4-63685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Polymerization of L‐Lactide Catalyzed by Metal Acetylacetonate Complexes N2 - ABSTRACTRing‐opening polymerizations (ROPs) of l‐lactide (LA) were performed at 120°C, 140°C, 150°C, and 180°C in bulk catalyzed by acetylacetonate (acac) complexes of manganese(II), nickel(II), copper(II), zirconium(IV), dibutyltin(IV), and vanadyl(V). These experiments revealed that only the acac complexes of Zr and Bu2Sn were reactive enough to enable quantitative polymerization within a few hours. Further ROPs with Bu2Sn(acac)2 and Zr(acac)4 showed that Bu2Sn(acac)2 had a slightly lower reactivity than the Zr complex. The ROPs catalyzed with Zr(acac)4 yielded number average molecular weights (Mn) up to 70,000 g mol−1. The matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra indicated an exclusive formation of cycles in the mass range of up to m/z 13,000 for Zr(acac)4 and up to m/z 18,000 for Bu2Sn(acac)2. Unusually high melting temperatures (187°C–192°C) were also achieved along with high crystallinities. Furthermore, four lactide/glycolide copolymerizations catalyzed by Zr(acac)4 were performed, and the topology and the extent of transesterification were characterized by MALDI‐TOF mass spectrometry and 13C NMR spectroscopy. KW - MALDI-TOF MS KW - Polycondensation KW - Acetylacetonate PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639754 DO - https://doi.org/10.1002/pol.20250788 SN - 2642-4150 SP - 1 EP - 9 PB - Wiley Periodicals LLC. AN - OPUS4-63975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Solvent-free sample preparation for matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry ofpolymer blends N2 - Solvent-free sample preparation offers some advantages over solvent-based techniques, such as improved accuracy, reproducibility and sensitivity, for matrix-assisted laser desorption/ionization (MALDI) analysis. However, little or no information is available on the application of solvent-free techniques for the MALDI analysis of polymer blends. Solvent-free sample preparation by ball milling was applied with varying sample-to-matrix ratios for MALDI time-of-flight mass spectrometry analysis of various polymers, including polystyrenes, poly(methyl methacrylate)s and poly(ethylene glycol)s. The peak intensity ratios were compared with those obtained after using the conventional dried droplet sample preparation method. In addition, solvent-assisted milling was also applied to improve sample homogeneities. Depending on the sample preparation method used, different peak intensity ratios were found, showing varying degrees of suppression of the signal intensities of higher mass polymers. Ball milling for up to 30 min was required to achieve constant intensity ratios indicating homogeneous mixtures. The use of wet-assisted grinding to improve the homogeneity of the blends was found to be disadvantageous as it caused partial degradation and mass-dependent segregation of the polymers in the vials.The results clearly show that solvent-free sample preparation must be carefully considered when applied to synthetic polymer blends, as it may cause additional problems with regard to homogeneity and stability of the blends. KW - MALDI TOF MS KW - Sample preparation KW - Polymer blends KW - Solvent-free PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598570 DO - https://doi.org/10.1002/rcm.9756 SN - 0951-4198 VL - 38 IS - 12 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Kretzschmar, R. A1 - Schade, U. A1 - Verel, R. A1 - Chadwick, O. A1 - Frossard, E. T1 - Spectroscopic analysis shows crandallite can be a major component of soil phosphorus N2 - Phosphorus (P) bioavailability is crucial for the productivity of natural and agricultural ecosystems, and soil P speciation plays a major role therein. Better understanding of P forms present in soil is thus essential to predict bioavailability. However, P speciation studies are only as powerful as the reference spectra used to interpret them, and most studies rely on a limited set of reference spectra. Most studies on soil P forms differentiate between Ca-bound P (e.g. apatite), organic P, Fe-bound P, and Al-bound P. In our analysis of a Ca, Al, and P rich soil from the Kohala region of Hawaii, we identified the mineral crandallite, CaAl3(PO4)2(OH)5·H2O, a mineral previously not considered to play a significant role in soils. Crandallite was first identified with powder X-ray diffraction. Subsequently reference spectra were collected, and the presence of crandallite was confirmed using micro-focused P K-edge X-ray absorption near edge structure (XANES) spectroscopy, micro-infrared spectroscopy, and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. Crandallite XANES spectra were distinct from other common XANES spectra due to the presence of features in the post-edge region of the spectrum. Linear combination fitting of bulk P K-edge XANES spectra allowed the determination of the proportion of crandallite to the total P content, indicating that crandallite comprises up to half, possibly even more of the soil P in the samples. Crandallite is therefore an important and potentially overlooked component of soil P, which pedogenically forms in soils with high P, Al, and Ca contents, where it could play an important role in P bioavailability. KW - Phosphorus KW - XANES spectrosocpy KW - Infrared spectroscopy KW - NMR spectrocopy PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654968 DO - https://doi.org/10.1016/j.geoderma.2026.117712 SN - 0016-7061 VL - 467 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-65496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic polymers and flaws of the Jacobson–Stockmayer theory N2 - Cyclic poly(L-lactide)s were prepared by ring-opening polymerization combined with simultaneous polycondensation (ROPPOC) in bulk at 160 ° with dibutyltin bis(4-cyanophenoxide) as catalyst. It is demonstrated by MALDI TOF mass spectrometry and 1H NMR end group analyses that cycles are formed by endto-end cyclization in addition to “back-biting” transesterification. Formation of high molar mass cyclic poly L-lactide)s by means of several more reactive ROPPOC catalysts presented previously and in new experiments is discussed. These experimental results, together with theoretical arguments, prove that part of the Jacobson–Stockmayer theory is wrong. The critical monomer concentration, above which end-toend cyclization is seemingly impossible, does not exist and reversible like irreversible polycondensations can theoretically proceed up to 100% conversion, so that finally all reaction products will necessarily adopt a cyclic architecture. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506419 DO - https://doi.org/10.1039/d0py00226g VL - 11 IS - 14 SP - 2595 EP - 2604 PB - Royal Society for Chemistry AN - OPUS4-50641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, Sarah A1 - Yenchick, Frank S. A1 - Lee, Chuping A1 - Hoang, Khoa A1 - Pophristic, Milan A1 - Karki, Santosh A1 - Marshall, Darrell D. A1 - Lu, I-Chung A1 - Lutomski, Corinne A. A1 - El-Baba, Tarick J. A1 - Wang, Beixi A1 - Pagnotti, Vincent S. A1 - Meher, Anil K. A1 - Chakrabarty, Shubhashis A1 - Imperial, Lorelei F. A1 - Madarshahian, Sara A1 - Richards, Alicia L. A1 - Lietz, Christopher B. A1 - Moreno-Pedraza, Abigail A1 - Leach, Samantha M. A1 - Gibson, Stephen C. A1 - Elia, Efstathios A. A1 - Thawoos, Shameemah M. A1 - Woodall, Daniel W. A1 - Jarois, Dean R. A1 - Davis, Eric T.J. A1 - Liao, Guochao A1 - Muthunayake, Nisansala S. A1 - Redding, McKenna J. A1 - Reynolds, Christian A. A1 - Anthony, Thilani M. A1 - Vithanarachchi, Sashiprabha M. A1 - DeMent, Paul A1 - Adewale, Adeleye O. A1 - Yan, Lu A1 - Wager-Miller, James A1 - Ahn, Young-Hoon A1 - Sanderson, Thomas H. A1 - Przyklenk, Karin A1 - Greenberg, Miriam L. A1 - Suits, Arthur G. A1 - Allen, Matthew J. A1 - Narayan, Srinivas B. A1 - Caruso, Joseph A. A1 - Stemmer, Paul M. A1 - Nguyen, Hien M. A1 - Weidner, Steffen A1 - Rackers, Kevin J. A1 - Djuric, Ana A1 - Shulaev, Vladimir A1 - Hendrickson, Tamara L. A1 - Chow, Christine S. A1 - Pflum, Mary Kay H. A1 - Grayson, Scott M. A1 - Lobodin, Vladislav V. A1 - Guo, Zhongwu A1 - Ni, Chi-Kung A1 - Walker, J. Michael A1 - Mackie, Ken A1 - Inutan, Ellen D. A1 - McEwen, Charles N. T1 - New Processes for Ionizing Nonvolatile Compounds in Mass Spectrometry: The Road of Discovery to Current State-of-the-Art N2 - This Perspective covers discovery and mechanistic aspects aswell as initial applications of novel ionization processes for use in massspectrometry that guided us in a series of subsequent discoveries, instrumentdevelopments, and commercialization. Vacuum matrix-assisted ionization onan intermediate pressure matrix-assisted laser desorption/ionization sourcewithout the use of a laser, high voltages, or any other added energy wassimply unbelievable, at first. Individually and as a whole, the variousdiscoveries and inventions started to paint, inter alia, an exciting new pictureand outlook in mass spectrometry from which key developments grew thatwere at the time unimaginable, and continue to surprise us in its simplisticpreeminence. We, and others, have demonstrated exceptional analyticalutility. Our current research is focused on how best to understand, improve, and use these novel ionization processes throughdedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid orliquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobilityspectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research anddiscoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead tothe Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as wellas how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage ofcomplex materials through complementary strengths. KW - Mass spectrometry PY - 2024 DO - https://doi.org/10.1021/jasms.3c00122 SN - 1879-1123 VL - 35 IS - 12 SP - 2753 EP - 2784 PB - American Chemical Society (ACS) AN - OPUS4-61417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rösler, Alexander A1 - Weidner, Steffen A1 - Klamroth, Tillmann A1 - Müller, Axel H. E. A1 - Schlaad, Helmut T1 - Kinetics of anionic polymerization of β‐myrcene in hydrocarbon solvents N2 - The kinetics of anionic polymerization of β‐myrcene initiated by sec‐butyllithium were examined in saturated and unsaturated hydrocarbon solvents, i.e. cyclohexane, cyclohexene, 4‐vinylcyclohexene and dl‐limonene. Polymerizations usually proceeded in a living manner, i.e. in the absence of termination and chain transfer reactions, in all solvents, to produce well‐defined polymyrcenes with high content (85%) of cis‐1,4 units. However, polymyrcenyllithium chains exhibited limited long‐term stability in 4‐vinylcyclohexene solution, most probably due to chain transfer to solvent. Reaction orders with respect to the concentration of active chains were found to be one‐quarter in cyclohexane increasing to one‐half in unsaturated solvents, indicating that the polymyrcenyllithium chains are present as tetrameric or dimeric associates, respectively. Apparent activation energies were found to be 81 kJ mol−1 in cyclohexane and 77 kJ mol−1 in dl‐limonene solution, which are close to the values obtained by quantum chemical calculations. KW - MALDI-TOF MS KW - Anionic polymerization KW - β‐myrcene KW - Kinetics KW - Reaction order KW - Activation energy KW - Microstructure KW - Quantum chemical calculations PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630900 DO - https://doi.org/10.1002/pi.6772 SN - 1097-0126 SP - 1 EP - 8 PB - Wiley CY - New York, NY AN - OPUS4-63090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Zwitterionic polymerization of glycolide catalyzed by pyridine N2 - The usefulness of various N- and P-based catalysts for syntheses of cyclic polyglycolide via zwitterionic polymerization of glycolide was examined. Most catalysts produced discolored, largely insoluble polyglycolides consisting of cycles and unidentified byproducts. Soluble, cyclic polyglycolides were obtained using neat pyridine as catalyst at 120 °C, 100 °C, 80 °C, and even at 60 °C. The number-average molecular weights were extremely low and depended slightly on the glycolide-to-pyridine ratio. Three different mass distributions of the cycles were detected by mass spectrometry, depending on the reaction conditions. The cyclic polyglycolides were also characterized by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) measurements. The SAXS data in combination with the mass spectra indicate that the majority of the cycles form extended-ring crystallites KW - MALDI-TOF MS KW - Polylactide KW - Polymerization KW - Zitterions PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639748 DO - https://doi.org/10.1039/d5py00762c SN - 1759-9954 SP - 1 EP - 9 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete‐Sungur A1 - Kumar, Sourabh A1 - Weidner, Steffen T1 - Quantitative Analysis of Polymers by MALDI‐TOF Mass Spectrometry: Correlation Between Signal Intensity and Arm Number N2 - The signal intensities of linear and star‐shaped poly(L‐lactides) (PLA) and poly (ethylene oxides) (PEO) were compared to determine the influence of the number of arms on the ionization in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. In this study, a variety of blends were prepared and investigated, including binary and ternary combinations of linear and star‐shaped polymers with similar molecular masses. The focus was on examining their intensity ratios. In equimolar binary PLA blends, polymer stars were observed to exhibit higher intensities than their linear counterparts. This result was supported by experiments with equimolar ternary PLA blends, which clearly demonstrated an intensity dependence on the number of polymer arms. It was observed that four‐arm PLA exhibited higher intensities than three‐arm PLA. A similar trend was observed in investigations involving acetylated polymer end groups, suggesting that differences in ionization are primarily influenced by polymer architecture rather than end groups. In order to validate this assumption, the binding energies for [polymer‐K] + adduct ions utilizing the most stable geometry obtained from GOAT (Global Optimizer Algorithm) were calculated, revealing that star‐shaped lower mass oligomers have slightly higher binding energies. KW - MALDI-TOF MS KW - Starlike polymers KW - Quantification KW - Topology PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653401 DO - https://doi.org/10.1002/jms.70023 SN - 1076-5174 VL - 61 IS - 1 SP - 1 EP - 12 PB - John Wiley & Sons Ltd. AN - OPUS4-65340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, Andreas A1 - Falkenhagen, Jana A1 - Kricheldorf, Hans R. T1 - Cyclic polyglycolide by means of metal acetylacetonates N2 - Glycolide was polymerized in bulk at 160 °C using various metal acetylacetonates as catalysts. Zirconium acetylacetonate was particularly efficient, enabling rapid polymerization even at 130 °C. The formation of cyclic poly(glycolic acid) (PGA), most likely via a ring-expansion polymerization (REP) mechanism, was proven by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Depending on the polymerization conditions, the formation of even-numbered cycles was favored to varying degrees. Number-average molecular weights (Mn) in the range of 2000–3500 g mol−1 were achieved with dispersities below 2.0. Wide-angle X-ray scattering (WAXS) powder patterns showed that the crystal lattice was the same as that of known linear PGAs, regardless of the Mn values. These patterns enabled a comparison of crystallinities with values derived from DSC measurements. KW - MALDI-TOF MS KW - Polyglycolide KW - Crystallization KW - Small-angle X-ray scattering KW - Cyclization PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653731 DO - https://doi.org/10.1039/d5ra07961f SN - 2046-2069 VL - 16 IS - 2 SP - 1757 EP - 1764 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rösler, Alexander A1 - Weidner, Steffen A1 - Klamroth, Tillmann A1 - Müller, Axel HE A1 - Schlaad, Helmut T1 - Kinetics of anionic polymerization of β‐myrcene in hydrocarbon solvents N2 - AbstractThe kinetics of anionic polymerization of β‐myrcene initiated by sec‐butyllithium were examined in saturated and unsaturated hydrocarbon solvents, i.e. cyclohexane, cyclohexene, 4‐vinylcyclohexene and dl‐limonene. Polymerizations usually proceeded in a living manner, i.e. in the absence of termination and chain transfer reactions, in all solvents, to produce well‐defined polymyrcenes with high content (85%) of cis‐1,4 units. However, polymyrcenyllithium chains exhibited limited long‐term stability in 4‐vinylcyclohexene solution, most probably due to chain transfer to solvent. Reaction orders with respect to the concentration of active chains were found to be one‐quarter in cyclohexane increasing to one‐half in unsaturated solvents, indicating that the polymyrcenyllithium chains are present as tetrameric or dimeric associates, respectively. Apparent activation energies were found to be 81 kJ mol−1 in cyclohexane and 77 kJ mol−1 in dl‐limonene solution, which are close to the values obtained by quantum chemical calculations. © 2025 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. KW - Myrcene KW - Anionic polymerization KW - MALDI TOF MS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649039 DO - https://doi.org/10.1002/pi.6772 SN - 0959-8103 SP - 1 EP - 8 PB - Wiley AN - OPUS4-64903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chabbah, T. A1 - Chatti, S. A1 - Jaffrezic-Renault, N. A1 - Weidner, Steffen A1 - Marestin, C. A1 - Mercier, R. T1 - Impedimetric sensors based on diethylphosphonate-containingpoly(arylene ether nitrile)s films for the detection of lead ions N2 - This article describes the elaboration and characterization of diethylphosphonate-containing polymers coated electrodes as sensors for the detection of heavy metalstraces, by electrochemical impedance spectroscopy. Diethylphosphonate groupswere chosen as heavy metals binding sites. Two different series of polymers bearingthese anchoring groups were synthesized. Whereas the diethylphosphonate groupsare directly incorporated in the aromatic macromolecular chain in some polymers, analiphatic spacer is removing the chelating site from the polymer backbone in others.The influence of the macromolecular structure on the sensing response was studied,especially for the detection of Pb2+,Ni2+,Cd2+and Hg2+. Polymer P6, including thehigher amount of diethylphosphonate groups removed from the polymer chain by ashort alkyl spacer gave the higher sensitivity of detection of lead ions, with a detec-tion limit of 50 pM KW - Heavy metals KW - Phosphonate esters KW - Lead ions KW - MALDI TOF MS PY - 2023 DO - https://doi.org/10.1002/pat.6065 SN - 1042-7147 SP - 1 EP - 11 PB - John Wiley & Sons, Ltd AN - OPUS4-57356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -