TY - CONF A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis via hydrides using molecular absorption spectrometry N2 - Small variations in the isotopic composition of some elements have been used as proof of provenance of mineral and biological samples, to describe geological processes, and to estimate a contamination source. Routinely, isotope compositions are measured by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time-consuming and they require a high qualified analyst. Here, an alternative faster and low-cost optical method for isotope ratio determination is investigated: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr have been determined by monitoring the absorption spectra of their in situ generated hydrides (XH) in graphite furnace HR-CS-MAS. For example, the system of two stable isotopes of boron (10B and 11B) was studied via its hydride for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, isotopic composition of samples and reference materials are calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results are metrologically compatible with those reported by mass spectrometric methods. [1] Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shift of their isotopologues can be resolved as shown in Fig.1 b. The extension of this methodology to other elements like Li, Ca and Sr is discussed [2]. References: [1] C. Abad, S. Florek, H. Becker-Ross, M.-D. Huang, H.-J. Heinrich, S. Recknagel, J. Vogl, N. Jakubowski, U. Panne, Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta, Part B, 136 (2017) 116-122. [2] C. Abad et al., unpublished results, 2018. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Optical spectrometry versus mass spectrometry for stable isotope analysis of B and Mg N2 - Mass spectrometric methods (MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. We propose a lower-cost and faster optical alternative for the analysis of isotope ratios of selected elements: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated mono-hydrides and halide (MH and MX) using graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. The extension of this methodology to other elements like Li, Ca, Cu, and Sr is discussed. T2 - 13. Symposium „Massenspektrometrische Verfahren der Elementspurenanalyse“ zusammen mit dem 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Isotope KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Boron monohydride KW - Magnesium monofluoride KW - Molecular absorption spectrometry PY - 2018 AN - OPUS4-45868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - "Keine Dienstmagd" - Analytical Sciences in Action N2 - Analytical Sciences has developed from Ostwald’s “unentbehrlichen Dienstmagd” to a chemical discipline at the core of many of today’s fundamental and applied scientific problems and innovations. An atomic or molecular understanding of basic processes in chemistry, soft matter physics, materials and life science is enabled only through new analytical methods and instrumentation. Similar observations can be found for pressing sociopolitical conflicts of the future: A rational discussion of global climate change or new energy sources is only possible with reliable analytical results. Progress in Analytical Sciences is only possible if the underlying interdisciplinary character is acknowledged and valued. The talk will illustrate the scope of modern Analytical Science through examples from process analysis relevant to modern process intensification and industry 4.0 to bioanalysis and the use of synchrotron radiation to elucidate fundamental reactions materials. T2 - MChG Talk CY - Technische Universität München, Germany DA - 27.11.2018 KW - Analytical Sciences PY - 2018 AN - OPUS4-46940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Tatzel, Michael A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium (Mg) is a major element in a range of silicate and carbonate minerals, the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg with natural abundances of 79 %, 10 %, and 11 %, respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight variations of isotope amount ratios n(26Mg)/n(24Mg) in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods and isotope ratios are expressed as deviation from an internationally agreed upon material, i.e. the zero-point of the δ-value scale. Drawbacks of this method include the high costs for instruments and their operation, experienced operators and elaborate, time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high- resolution continuum source graphite furnace molecular absorption spectrometry (HR- CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X2Σ → A2Πi and X 2Σ → B2Σ+ around wavelengths 358 nm and 268 nm, respectively. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A2Πi → X2Σ as well as the MgO molecule for the electronic transition A1Π+ → X1Σ around 500 nm. The MgF and MgO spectra are described by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Isotope amount ratios in rock samples with and without matrix separation were analyzed. Calculated δ-values were accurate and obtained with precisions ranging between 0.2 ‰ and 0.5 ‰ (1 SD, n = 10). On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared to MC-ICP-MS. T2 - Seminars Earth Surface Geochemistry- Deutsches GeoForschungsZentrum GFZ CY - Potsdam, Germany DA - 06.08.2019 KW - Isotope analysis KW - Magnesium KW - HR-CS-MAS KW - LIBS KW - Diatomic KW - Optical spectroscopy PY - 2019 AN - OPUS4-49904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Simon, Franz-Georg T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge and Wastewater-based Fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are chemicals which were developed to improve humanity’s quality of life. Due to their high chemical stability and resistance to degradation by heat or acids, PFAS were used in a variety of consumer products. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system resulted in the contamination of effluents and sewage sludge from wastewater treatment plants (WWTPs) (Roesch et al. 2022). Since sewage sludge is often used as fertilizer, its application on agricultural soils has been observed as a significant entry path for PFAS into the environment, specifically in our food chain. In Germany the sewage sludge/biosolid application on agricultural land was banned with the amendment of the German Sewage Sludge Ordinance and by 2029 sewage sludge application will be totally prohibited. However, phosphorus (P) from sewage sludge should still be recycled in WWTPs of cities with a population larger than 50,000 residents. To produce high-quality P-fertilizers for a circular economy, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Due to the strong diversity of industrial PFAS usage it is not clear if a safe application of novel recycled P-fertilizers from WWTPs can be guaranteed. Therefore, we analyzed various sewage sludges and wastewater-based fertilizers. Sewage sludge (SL) samples from various WWTPs in Germany and Switzerland, six sewage sludge ashes (SSA) from Germany, six thermally treated SL and SSA samples with different additives (temperatures: 700-1050 °C), two pyrolyzed SL samples (temperature: 400 °C) and two struvite samples from Germany and Canada were analyzed. The goal was to quantify PFAS in sewage sludges and wastewater-based P-fertilizers with the sum parameter extractable organic fluorine (EOF) by combustion ion chromatography (CIC). The results were compared with data from classical LC-MS/MS target analysis as well as selected samples by HR-MS suspect screening. The EOF values of the SLs mainly range between 154 and 538 µg/kg except for one SL which showed an elevated EOF value of 7209 µg/kg due to high organofluorine contamination. For the SSA samples the EOF values were lower and values between LOQ (approx. 60 µg/kg) and 121 µg/kg could be detected. For the pyrolyzed SLs no EOF values above the LOQ were detected. Moreover, the two wastewater-based struvite fertilizers contain 96 and 112 µg/kg EOF, respectively. In contrast to the EOF values, the sum of PFAS target values were relatively low for all SLs. Additional applied PFAS HR-MS suspect screening aimed to tentatively identify PFAS that could contribute to the hitherto unknown part of the EOF value. The majority of the detected fluorinated compounds are legacy PFAS such as short- and long-chain perfluorocarboxylic acids (PFCA), perfluorosulfonic acids (PFSA), polyfluoroalkyl phosphate esters (PAPs) and perfluorophosphonic acids (PFPA). Moreover, fluorinated pesticides, pharmaceutical as well as aromatic compounds were also identified, which are all included in the EOF parameter. Our research revealed that the current PFAS limit of 100 µg/kg for the sum of PFOS + PFOA in the German Fertilizer Ordinance is no longer up to date. Since the number of known PFAS already exceeds 10,000, the ordinance limit should be updated accordingly. Recent regulations and restrictions on using long-chain PFAS (≥C8) have resulted in a significant shift in the industry towards (ultra-)short-chain alternatives, and other, partly unknown, emerging PFAS. Ultimately, also fluorinated pesticides and pharmaceuticals, which end up as ultrashort PFAS in the WWTPs, have to be considered as possible pollutants in fertilizers from wastewater, too. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 AN - OPUS4-58345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Lisec, Jan A1 - Borca, C. A1 - Huthwelker, T. A1 - Simon, Franz-Georg T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -