TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Following fluorinated drugs by molecular absorption spectrometry – from cancer cells to body fluids N2 - Fluorine has been widely introduced into pharmaceutical drugs. Due to the high C-F bond strength, a single atom substitution with fluorine produces drastic desirable and tunable changes in the molecular properties. However, the clinical monitoring of these drugs is not straightforward. Organofluorine compounds are elusive for a non-targeted analysis; a significant problem in fluorine determination is the lack of suitable detection techniques. Standard atomic absorption and emission spectrometers cannot access fluorine, because their resonance lines lie in the VUV spectral range below 100 nm. In the case of conventional inductively coupled argon plasmas (ICP), the plasma energy is too low to generate a significant population of excited fluorine atoms. Recently, our group introduces high-resolution continuum source absorption spectrometry (HR-CS MAS) as a new way for the indirect monitoring of fluorinated compounds. Main benefits of HR-CS-MAS includes low limits of detection, complete analyte recovery, simple to no sample preparation, and short time analysis. T2 - 16th Annual Congress of International Drug Discovery Science and Technology 2018 CY - Cambridge, MA, USA DA - 16.08.2018 KW - Fluorine KW - Anti-cancer KW - Capecitabine KW - Fluorouracil KW - HR-CS-MAS PY - 2018 AN - OPUS4-45822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A comparative analysis of optical spectrometry methods and MC-ICP-MS for stable isotope analysis of magnesium in geological samples N2 - Society for Applied Spectroscopy (SAS) Atomic Section Student Award. Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS), and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope ratios in selected rock reference materials, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied and their results compared with MC-ICP-MS. By HR-CS-MAS, samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi, and X 2Σ → B 2Σ+. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A 2Πi → X 2Σ, as well as direct analysis by the MgO molecule for the electronic transition A 1Π+ → X 1Σ. The MgF and MgO spectra are described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Results were accurate with precisions ranging between 0.2 ‰ and 0.8 ‰ (2 SD, n= 10) for HR-CS-GFMAS. No statistically significant differences were observed for samples w/o matrix extraction. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of direct analysis, however the precision is lower due the lack of solid isotopic calibration standards. T2 - SciX 2019. 46th Annual North American Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Palm Springs, CA, USA DA - 13.10.2019 KW - Isotope analysis KW - Diatomic molecule KW - Magnesium KW - MC-ICP-MS KW - HR-CS-MAS KW - LIBS PY - 2019 AN - OPUS4-49883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Riedel, Jens A1 - Wander, Lukas T1 - Integrated and networked systems and processes – A perspective for digital transformation of our chemical and pharmaceutical production N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. At the same time, we need to move towards knowledge-based production that takes into account all essential equipment, process and control data from plants and laboratories and makes valuable expertise available and transferable. The potential of data from production together with its contextual information is often not yet consistently used today for a comprehensive understanding of production. By giving examples this paper outlines a possible more holistic approach to digitalisation and the use of machine-based methods in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - GDCh Science Forum 2021 - GDCh Wissenschaftsforum 2021 CY - Online meeting DA - 29.08.2021 KW - Process analytical technology KW - Online NMR spectroscopy KW - Process industry KW - Industry 4.0 KW - Digital transformation KW - Autonomous chemistry PY - 2021 AN - OPUS4-53171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubwoski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using pe frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS:: porous material, thermo plastic (melting point >100oC), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 104 cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits whith increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S whit a correlation coefficient r2 of 0.9987 and sensitivy of 3.4x104 cpsµg-1 for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Richter, Silke A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - High-resolution optical isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Current activities on Department Analytical Chemistry, Reference Materials about optical isotopic spectrometry as a tool for aging studies of Li-ion batteries. T2 - Adlershofer Kolloquium - FB 1.6 CY - Online meeting DA - 18.05.2021 KW - High-resolution KW - Battery aging KW - Storage Technologies KW - Optical isotopic spectrometry KW - Lithium-ion batteries KW - Inorganic Reference Materials KW - Pouch cell KW - Anode KW - Cathode KW - Electrochemistry KW - Isotope PY - 2021 AN - OPUS4-53712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Mao-Dong, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of isotope ratios by molecular absorption spectrometry N2 - Boron and Magnesium present two and three stable isotopes respectevely. It is due to their relatively large mass difference (~ 10%) that isotope fractionation leads to considerable isotope amount ratio variations in the nature. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Traditionally, isotope ratio variations have been determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) for boron and Magnesium monofluoride (MgF) for magnesium in a graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) were evaluated. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements T2 - Analytik Jena Days CY - Idstein, Germany DA - 26.06.2019 KW - Isotope anaylsis KW - HR-CS-MAS KW - Boron KW - Magnesium KW - Optical spectroscopy KW - Diatomic molecule PY - 2019 AN - OPUS4-49877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ascher, Lena A1 - Häckel, A. A1 - Schellenberger, E. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Bildgebung von Eu-dotierten sehr kleinen Eisenoxid-Nanopartikeln in atherosklerotischen Plaques mittels LA-ICP-MS N2 - Atherosklerotische Läsionen können durch Magnetresonanztomographie (MRT) unter Verwendung von sehr kleinen Eisenoxidnanopartikeln (VSOP) sichtbar gemacht werden. VSOP akkumulieren in atherosklerotischen Plaques und dienen somit als Atherosklerosesonde. Das Ziel dieses Projektes war die Abbildung der Verteilung von Europium-dotierten VSOP (Eu-VSOP) durch Laserablation ICP-MS in histologischen Dünnschnitten der Aortenwurzelregion des ApoE-Knockout-Mausmodells, das reich an atherosklerotischen Plaques ist. Darüber hinaus wurde untersucht, ob die VSOP-Akkumulation in den Plaques mit anderen Biomarkern der Entzündung wie Makrophagen und verändertem Endothel korreliert. Somit wäre eine Beurteilung, ob es sich hierbei um instabile bzw. vulnerable Plaque-Regionen handelt möglich. Zu diesem Zweck wurden Antikörper mit verschiedenen Lanthaniden markiert und mit der Eu-VSOP-Verteilung unter Verwendung von LA-ICP-MS in einem Multiplex-Messmodus korreliert. Eine mögliche Korrelation von reaktiven Stickstoffspezies (RNS) mit endogenem Eisen oder Eu-VSOP kann ebenfalls durch LA-ICP-MS nachgewiesen werden. Zu diesem Zweck wurden RNS-spezifische Antikörper auch mit Lanthaniden markiert. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Bioimaging KW - LA-ICP-MS KW - Nanopartikel KW - Antikörpermarkierung PY - 2018 AN - OPUS4-45921 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khanipour, Peyman T1 - Real time mass spectrometry - From Unravelling Electrochemical Reaction Mechanism to Trace Analysis of Impurities in Hydrogen Gas N2 - Climate change and related energy policies, exacerbated by unforeseen geopolitical developments, pose new challenges for gas analytics, such as the use of hydrogen, hydrogen-containing alternative gaseous fuels (NH3, etc.), the use of alternative methane-based energy gases (LNG, LPG, etc.) or decarbonisation via CCSU. In all topics, the quality, i.e. the actual chemical composition of the gases, naturally plays a decisive role. BAM is meeting this strategic importance with the further development of hydrogen analytics and is continuing to develop the methods used in order to support the German economy and research landscape with traceability, reference materials and analytical procedures as quickly as possible. Mass spectrometry plays an important role for trace analysis in hydrogen matrix. The presentation shows first experimental results from the application of PTR-TOF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry). T2 - 11th International GAS Analysis Symosium & Exhibition CY - Paris, France DA - 17.05.2022 KW - Gas Analysis KW - Hydrogen KW - Metrology KW - Mass Spectrometry KW - Trace Analysis PY - 2022 AN - OPUS4-56589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Keller, Lisa-Marie A1 - Scholz, Lena A1 - Weigert, Florian A1 - Radnik, Jörg A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis via hydrides using molecular absorption spectrometry N2 - Small variations in the isotopic composition of some elements have been used as proof of provenance of mineral and biological samples, to describe geological processes, and to estimate a contamination source. Routinely, isotope compositions are measured by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time-consuming and they require a high qualified analyst. Here, an alternative faster and low-cost optical method for isotope ratio determination is investigated: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr have been determined by monitoring the absorption spectra of their in situ generated hydrides (XH) in graphite furnace HR-CS-MAS. For example, the system of two stable isotopes of boron (10B and 11B) was studied via its hydride for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, isotopic composition of samples and reference materials are calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results are metrologically compatible with those reported by mass spectrometric methods. [1] Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shift of their isotopologues can be resolved as shown in Fig.1 b. The extension of this methodology to other elements like Li, Ca and Sr is discussed [2]. References: [1] C. Abad, S. Florek, H. Becker-Ross, M.-D. Huang, H.-J. Heinrich, S. Recknagel, J. Vogl, N. Jakubowski, U. Panne, Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta, Part B, 136 (2017) 116-122. [2] C. Abad et al., unpublished results, 2018. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Optical spectrometry versus mass spectrometry for stable isotope analysis of B and Mg N2 - Mass spectrometric methods (MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. We propose a lower-cost and faster optical alternative for the analysis of isotope ratios of selected elements: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated mono-hydrides and halide (MH and MX) using graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. The extension of this methodology to other elements like Li, Ca, Cu, and Sr is discussed. T2 - 13. Symposium „Massenspektrometrische Verfahren der Elementspurenanalyse“ zusammen mit dem 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Isotope KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Boron monohydride KW - Magnesium monofluoride KW - Molecular absorption spectrometry PY - 2018 AN - OPUS4-45868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - "Keine Dienstmagd" - Analytical Sciences in Action N2 - Analytical Sciences has developed from Ostwald’s “unentbehrlichen Dienstmagd” to a chemical discipline at the core of many of today’s fundamental and applied scientific problems and innovations. An atomic or molecular understanding of basic processes in chemistry, soft matter physics, materials and life science is enabled only through new analytical methods and instrumentation. Similar observations can be found for pressing sociopolitical conflicts of the future: A rational discussion of global climate change or new energy sources is only possible with reliable analytical results. Progress in Analytical Sciences is only possible if the underlying interdisciplinary character is acknowledged and valued. The talk will illustrate the scope of modern Analytical Science through examples from process analysis relevant to modern process intensification and industry 4.0 to bioanalysis and the use of synchrotron radiation to elucidate fundamental reactions materials. T2 - MChG Talk CY - Technische Universität München, Germany DA - 27.11.2018 KW - Analytical Sciences PY - 2018 AN - OPUS4-46940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Tatzel, Michael A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium (Mg) is a major element in a range of silicate and carbonate minerals, the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg with natural abundances of 79 %, 10 %, and 11 %, respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight variations of isotope amount ratios n(26Mg)/n(24Mg) in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods and isotope ratios are expressed as deviation from an internationally agreed upon material, i.e. the zero-point of the δ-value scale. Drawbacks of this method include the high costs for instruments and their operation, experienced operators and elaborate, time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high- resolution continuum source graphite furnace molecular absorption spectrometry (HR- CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X2Σ → A2Πi and X 2Σ → B2Σ+ around wavelengths 358 nm and 268 nm, respectively. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A2Πi → X2Σ as well as the MgO molecule for the electronic transition A1Π+ → X1Σ around 500 nm. The MgF and MgO spectra are described by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Isotope amount ratios in rock samples with and without matrix separation were analyzed. Calculated δ-values were accurate and obtained with precisions ranging between 0.2 ‰ and 0.5 ‰ (1 SD, n = 10). On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared to MC-ICP-MS. T2 - Seminars Earth Surface Geochemistry- Deutsches GeoForschungsZentrum GFZ CY - Potsdam, Germany DA - 06.08.2019 KW - Isotope analysis KW - Magnesium KW - HR-CS-MAS KW - LIBS KW - Diatomic KW - Optical spectroscopy PY - 2019 AN - OPUS4-49904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Simon, Franz-Georg T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge and Wastewater-based Fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are chemicals which were developed to improve humanity’s quality of life. Due to their high chemical stability and resistance to degradation by heat or acids, PFAS were used in a variety of consumer products. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system resulted in the contamination of effluents and sewage sludge from wastewater treatment plants (WWTPs) (Roesch et al. 2022). Since sewage sludge is often used as fertilizer, its application on agricultural soils has been observed as a significant entry path for PFAS into the environment, specifically in our food chain. In Germany the sewage sludge/biosolid application on agricultural land was banned with the amendment of the German Sewage Sludge Ordinance and by 2029 sewage sludge application will be totally prohibited. However, phosphorus (P) from sewage sludge should still be recycled in WWTPs of cities with a population larger than 50,000 residents. To produce high-quality P-fertilizers for a circular economy, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Due to the strong diversity of industrial PFAS usage it is not clear if a safe application of novel recycled P-fertilizers from WWTPs can be guaranteed. Therefore, we analyzed various sewage sludges and wastewater-based fertilizers. Sewage sludge (SL) samples from various WWTPs in Germany and Switzerland, six sewage sludge ashes (SSA) from Germany, six thermally treated SL and SSA samples with different additives (temperatures: 700-1050 °C), two pyrolyzed SL samples (temperature: 400 °C) and two struvite samples from Germany and Canada were analyzed. The goal was to quantify PFAS in sewage sludges and wastewater-based P-fertilizers with the sum parameter extractable organic fluorine (EOF) by combustion ion chromatography (CIC). The results were compared with data from classical LC-MS/MS target analysis as well as selected samples by HR-MS suspect screening. The EOF values of the SLs mainly range between 154 and 538 µg/kg except for one SL which showed an elevated EOF value of 7209 µg/kg due to high organofluorine contamination. For the SSA samples the EOF values were lower and values between LOQ (approx. 60 µg/kg) and 121 µg/kg could be detected. For the pyrolyzed SLs no EOF values above the LOQ were detected. Moreover, the two wastewater-based struvite fertilizers contain 96 and 112 µg/kg EOF, respectively. In contrast to the EOF values, the sum of PFAS target values were relatively low for all SLs. Additional applied PFAS HR-MS suspect screening aimed to tentatively identify PFAS that could contribute to the hitherto unknown part of the EOF value. The majority of the detected fluorinated compounds are legacy PFAS such as short- and long-chain perfluorocarboxylic acids (PFCA), perfluorosulfonic acids (PFSA), polyfluoroalkyl phosphate esters (PAPs) and perfluorophosphonic acids (PFPA). Moreover, fluorinated pesticides, pharmaceutical as well as aromatic compounds were also identified, which are all included in the EOF parameter. Our research revealed that the current PFAS limit of 100 µg/kg for the sum of PFOS + PFOA in the German Fertilizer Ordinance is no longer up to date. Since the number of known PFAS already exceeds 10,000, the ordinance limit should be updated accordingly. Recent regulations and restrictions on using long-chain PFAS (≥C8) have resulted in a significant shift in the industry towards (ultra-)short-chain alternatives, and other, partly unknown, emerging PFAS. Ultimately, also fluorinated pesticides and pharmaceuticals, which end up as ultrashort PFAS in the WWTPs, have to be considered as possible pollutants in fertilizers from wastewater, too. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 AN - OPUS4-58345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Lisec, Jan A1 - Borca, C. A1 - Huthwelker, T. A1 - Simon, Franz-Georg T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Tavernaro, Isabella A1 - Würth, Christian A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. T1 - Absolute Determination of Photoluminescence Quantum Yields of Scattering LED Converter Materials – How to Get it Right N2 - Optical measurements of scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders play an important role in fundamental research and industry. Typical examples are luminescent nano- and microparticles and phosphors of different composition in different matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter for the performance of these materials is the photoluminescence quantum yield QY, i.e., the number of emitted photons per number of absorbed photons. QY of transparent luminophore solutions can be determined relatively to a fluorescence quantum yield standard of known QY. Such standards are meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like dispersions of luminescent nanoparticles, solid phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Although the importance of reliable absolute QY measurements has been recognized, no interlaboratory comparisons (ILCs) on measurement uncertainties and the identification of typical sources of uncertainty have been yet reported. Also, no scattering reference materials with known QY are available. We present here the results of a first ILC of 3 laboratories from academia and industry performed to identify and quantify sources of uncertainty of absolute QY measurements of scattering samples. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring QY of transparent and scattering dye solutions and solid phosphors. As representative and industrially relevant solid and scattering samples, YAG:Ce optoceramics of varying surface roughness were chosen, applied, e.g., as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank, utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While matching QY values could be obtained for transparent dye solutions and scattering dispersions, here using a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences, with the blank's optical properties accounting for measurement uncertainties of more than 20 %. Based upon the ILC results, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder which reveals a near-Lambertian light scattering behavior, yielding a homogeneous light distribution within the integrating sphere. T2 - e-MRS 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Phosphor KW - Converter marterial KW - Fluorescence KW - Interlaboratory KW - Comparison KW - Method KW - Uncertainty KW - Reference material PY - 2024 AN - OPUS4-60490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Radnik, Jörg A1 - Kunc, F. A1 - Brinkmann, A. A1 - Lopinski, G. A1 - Johnston, L. J. T1 - Characterization and quantification of functional groups and coatings on nanoobjects an overview N2 - Characterization of Nanoparticles – Questions to Ask, Functional Nanoparticles (NPs) – Organic, Inorganic, and Hybrid Nanoparticles Nanomaterial Characterization Standardization – Addressing Remaining Gaps Surface FGs Particle Surface Chemistry - Why is it Important? Particle Surface Chemistry - A Key Driver for Performance, Applications, and Safety Aspects Method Development for Quantifying FGs and Ligands on Particle Surfaces FG Quantification – Method Choice & Criteria Relevant for Data Interpretation Quantifying the Amount of Total and Accessible FGs on Aminated Silica Nanoparticles (SiO2-NH2) Comparing the Total and Accessible –NH2 Content on Aminated Silica NPs of Different Size Characterization of Nanoparticles Standardization Standardized Measurements of Surface FGs on Nanoparticles EMP Project SMURFnano EMP Project SMURFnano Work Packages & Goals Certified Reference Materials from BAM T2 - e-MRS 2024 (Spring Meeting of the European Materials Research Society, Altech Symposium) CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Quality assurance KW - Interlaboratory comparison KW - Method KW - Uncertainty KW - Reference material KW - Surface analysis KW - Optical assay KW - NMR KW - Silica KW - Ligand PY - 2024 AN - OPUS4-60495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle A1 - Gawlitza, Kornelia A1 - Gersdorf, Anna A1 - Gradzielksi, Michael A1 - Rurack, Knut T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Berger, Achim T1 - Tragbare RFA an Gläsern: Ergebnisse und Grenzen N2 - Vorstellung der Ergebnisse der Messungen an Gläsern von Goethes Prismen. T2 - 3. Goethe/Ritter-Workshop CY - Berlin, Germany DA - 25.05.2018 KW - Goethe KW - Farbenlehre KW - Prisma KW - Handheld KW - XRF PY - 2018 AN - OPUS4-46369 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -