TY - JOUR A1 - Jakubowski, N. A1 - Borrmann, S. A1 - Recknagel, Sebastian A1 - Roik, Janina A1 - Rickert, F. T1 - Comparison of peristaltic pumps used for sample introduction in Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) N2 - In this investigation, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle using a simultaneous ICP-AES instrument with standard operating conditions. It is found that the figures of merit achieved are quite comparable for all three pumps. Relative standard deviations (RSDs) range between 0.2% and 1.8%, and limits of detection as low as 0.1 μg/L have been achieved , demonstrating that the easy click principle of the new pump does not compromise the analytical figures of merit. KW - ICP-AES KW - Peristaltic pumps KW - ICP-MS PY - 2020 IS - 35 / S4 SP - 6 AN - OPUS4-52020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - ZRM für die Nichtmetall-Analytik N2 - Die Vorgehensweise bei der Zertifizierung von Referenzmaterialien in der BAM entsprechend den Regeln des ISO-Guide 35 wird an Beispielen beschrieben. Darüber hinaus wird ein umfassender Überblick über Referenzmaterialien zur Analyse der Nichtmetalle Sauerstoff, Wasserstoff, Stickstoff, Kohle und Schwefel gegeben. T2 - Expertentreffen anorganische Materialanalyse CY - Langenselbold, Germany DA - 11.09.2019 KW - ZRM KW - Nichtmetall-Analytik KW - ISO-Guide 35 KW - Referenzmaterialien PY - 2019 AN - OPUS4-49091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation of certified reference material for the determination of hydrolytic resistance of borosilicate glass is described. Certified properties are the acid consumption according to the relevant standard procedures described in ISO 720, USP<660> and Ph.Eur. 3.2.1. T2 - PharmaGlass Workshop CY - Sheffield, UK DA - 09.10.2019 KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2019 AN - OPUS4-49466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Reference materials for non-metal analysis N2 - The procedure for certification of reference materials in BAM in accordance with the rules of ISO Guide 35 is described using examples. In addition, a comprehensive overview of reference materials for the analysis of non-metals oxygen, hydrogen, nitrogen, coal and sulfur is given. T2 - LECO Workshop: CHNOS determination in inorganic (high tec) materials CY - Berlin, Germany DA - 22.10.2019 KW - CRM KW - Non-metal analysis KW - ISO-Guide 35 KW - Reference materials PY - 2019 AN - OPUS4-49458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - ISO-Guide 35 in der Praxis eines RM-Herstellers N2 - Der ISO-Guide 35 beschreibt die notwendigen Schritte zur Herstellung von zertifizierten Referenzmaterialien. Anhand praktischer Beispiele wird die Umsetzung des Guide 35 in der BAM dokumentiert. T2 - DAkkS-Informationsveranstaltung - Akkreditierung von Referenzmaterialherstellern; Fachbereich Ringversuche / Referenzmaterialien CY - Berlin, Germany DA - 14.02.2019 KW - ZRM KW - ISO-Guide 35 KW - Referenzmaterial-Herstellung PY - 2019 AN - OPUS4-47395 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Lopez-Linares, F. A1 - Poirier, L. A1 - Jakubowski, Norbert A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Shake, shut, and go – A fast screening of sulfur in heavy crude oils by highresolution continuum source graphite furnace molecular absorption spectrometry via GeS molecule detection N2 - A fast and simple method for sulfur quantification in crude oils was developed by using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For this, heavy crude oil samples were prepared as microemulsion (shake) and injected into a graphite furnace (shut). Finally, the concentration of sulfur was determined by monitoring in situ the transient molecular spectrum of GeS at wavelength 295.205nm after adding a germanium solution as molecular forming agent (and go). Zirconium dioxide in the form of nanoparticles (45–55nm) was employed as a permanent modifier of the graphite furnace. Calibration was done with an aqueous solution standard of ammonium sulfate, and a characteristic mass (m0) of 7.5ng was achieved. The effectiveness of the proposed method was evaluated analizing, ten heavy crude oil samples with Sulfur amounts ranging between 0.3 and 4.5% as well as two NIST standard reference materials, 1620c and 1622e. Results were compared with those obtained by routine ICP-OES analysis, and no statistical relevant differences were found. KW - Heavy crude oil KW - Sulfur KW - HR-CS-MAS KW - Germanium sulfide KW - Microemulsion PY - 2019 DO - https://doi.org/10.1016/j.sab.2019.105671 SN - 0584-8547 VL - 160 SP - 105671 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-48747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Koch, Matthias A1 - Wise, S. A. A1 - Panne, Ulrich T1 - Fifteenth international symposium on biological and environmental reference materials (BERM-15) N2 - The 15th International Symposium on Biological and Environmental Reference Materials (BERM-15), organized by BAM, took place at in Berlin in September 2018. An overview on main topics of the conference is given. KW - BERM KW - Reference materials PY - 2019 DO - https://doi.org/10.1007/s00769-019-01377-9 SN - 1432-0517 SN - 0949-1775 VL - 24 IS - 3 SP - 249 EP - 250 PB - Springer Verlag AN - OPUS4-48203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Lkhagvasuren, B. A1 - Oyuntungalag, U. A1 - Rausch, J. T1 - Certified reference material for determination of total cyanide in soil [BAM-U116/CGL306] N2 - CRM (Certified Reference Material) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between CGL (Central Geological Laboratory) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. KW - CRM KW - Cyanide in soil KW - Total cyanide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469694 DO - https://doi.org/10.17265/2162-5263/2018.04.004 SP - 149 EP - 161 PB - David Publishing AN - OPUS4-46969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Non-metals in inorganic reference materials N2 - The analysis of non-metals normally is carried out using elemental analysers which require reference material for calibration. In the lecture the CRM-program of BAM suitable for non-metal-analysis is presented. There are CRMs available with non-metal contents in the low ppm up to the high percent region. T2 - CETAMA 2018 CY - Paris, France DA - 27.11.2018 KW - CRM KW - Non-metals KW - Carbon KW - Sulfur KW - Oxygen KW - Nitrogen KW - Hydrogen KW - Reference material PY - 2018 AN - OPUS4-46968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - BERM CY - Berlin, Germany DA - 23.09.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - 4th International Glow Discharge Spectroscopy Symposium CY - Berlin, Germany DA - 15.04.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -