TY - JOUR A1 - Manso, M. A1 - Pessanha, S. A1 - Guerra, M. A1 - Reinholz, Uwe A1 - Afonso, C. A1 - Radtke, Martin A1 - Lourenco, H. A1 - Carvalho, M. L. A1 - de Oliveira Guilherme Buzanich, Ana T1 - Assessment of Toxic Metals and Hazardous Substances in Tattoo Inks Using Sy-XRF, AAS, and Raman Spectroscopy N2 - Synchrotron radiation X-ray fluorescence spectroscopy, in conjunction with atomic absorption and Raman spectroscopy, was used to analyze a set of top brand tattoo inks to investigate the presence of toxic elements and hazardous substances. The Cr, Cu, and Pb contents were found to be above the maximum allowed levels established by the Council of Europe through the resolution ResAP(2008)1 on requirements and criteria for the safety of tattoos and permanent makeup. Raman analysis has revealed the presence of a set of prohibited substances mentioned in ResAP(2008)1, among which are the pigments Blue 15, Green 7, and Violet 23. Other pigments that were identified in white, black, red, and yellow inks are the Pigment White 6, Carbon Black, Pigment Red 8, and a diazo yellow, respectively. The present results show the importance of regulating tattoo ink composition. KW - Synchrotron KW - Tattoo inks KW - XRF KW - Toxic metals KW - Hazardous substances PY - 2019 DO - https://doi.org/10.1007/s12011-018-1406-y VL - 187 IS - 2 SP - 596 EP - 601 PB - Springer AN - OPUS4-47369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, M.F. A1 - Neri, E. A1 - Radtke, Martin T1 - Gold leaf tesserae: tracing the origins of gold using synchrotron-based techniques N2 - To gain insight into the possible origin of the gold used in the production of tesserae containing gold leaf less than 0.5 μm thick placed between two layers of glass, we propose a non-destructive synchrotron radiation (SR) XRF protocol based on sequential analysis under optimised analytical conditions. Using this protocol, trace element analysis is achieved with detection limits of 1–6 mg/kg. As Pt and Au have adjacent fluorescence energies, we tested the most challenging situation, when Pt is present in very low concentrations in gold. Data obtained by double-dispersive XRF (D2XRF) and μXRF for fourth–ninth-century mosaics decorating nine Eastern and Western religious buildings show that the Eastern and Western tesserae are made from different alloys. However, these alloys are identical to those used to make gold leaf for gilding, because plastic deformation requires the use of gold alloys with high ductility and malleability. Although trace element composition of gold used in the concerned period is only available for coins, by comparing the amounts of Pt contained in the tesserae and in the coins we show that Roman tesserae are made from Roman gold, as described in the documentary sources. We observe for the Byzantine period the use of a Byzantine gold and of gold supposedly from different stages of recycling, and we suggest the use of Umayyad and Abbasid gold for the production of Islamic tesserae. KW - Gold KW - XRF KW - Synchrotron KW - BAMline KW - D2XRF KW - Tesserae PY - 2023 DO - https://doi.org/10.1140/epjp/s13360-022-03638-y SN - 2190-5444 VL - 138 IS - 2 SP - 1 EP - 15 AN - OPUS4-57208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Kulow, A. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Fittschen, U. E. A. A1 - Hampel, S. T1 - Energy Resolved Imaging with Coded Apertures N2 - Our aim is to develop a simple and inexpensive method for full field X-ray fluorescence imaging.We combine an energydispersive array detector with a coded aperture to obtain high resolut ion images. To obtain the information from the recorded image a reconstruction step is necessary. The reconstruction methods we have developed, were tested on simulated data and then applied to experimental data. The first tests were carried out at the BAMline @BESSY II. This method enables the simultaneous detection of multiple elements,which is important e.g. in the field of catalysis. T2 - SRI 2021 CY - Online meeting DA - 28.3.2022 KW - Synchrotron KW - BAMline KW - Machine Learning KW - Coded Aperture PY - 2022 AN - OPUS4-56298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Artificial intelligence for spectroscopy examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from bamline will be featured. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is reviewed. As a last example the reconstruction of measurements with the X-ray color camera and coded apertures is presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 22.01.2020 KW - Machine learning KW - Natural language processing KW - Neural networks KW - Synchrotron KW - BAMline PY - 2020 AN - OPUS4-51891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - SRXRF examples from the BAMline N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. T2 - Better with Scattering CY - Online meeting DA - 16.03.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered Glass Monoliths as New Supports for Affinity Columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529117 DO - https://doi.org/10.20944/preprints202103.0298.v1 SN - 2310-287X SP - 1 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Von Ägypten bis Hiddensee – Analyse von Gold mit Synchrotronstrahlung - Update 2018 N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Zusätzlich werden die modernen Messmethoden vorgestellt, die am Synchrotron heutzutage zur Verfügung stehen. T2 - Vorlesung FU Berlin Einführung in die Archäometrie CY - Berlin, Germany DA - 01.11.2018 KW - Gold KW - Synchrotron KW - XRF KW - BAMline PY - 2018 AN - OPUS4-46451 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lilensten, L. A1 - Provost, K. A1 - Perrière, L. A1 - Fonda, E. A1 - Couzinié, J. A1 - Amman, F. A1 - Radtke, Martin A1 - Dirras, G. A1 - Guillot, I. T1 - Experimental investigation of the local environment and lattice distortion in refractory medium entropy alloys N2 - EXAFS analysis of pure elements, binary and ternary equiatomic refractory alloys within the Nb-Zr-Ti-Hf- Ta system is performed at the Nb and Zr K-edges to analyze the evolution of the chemical local environ- ment and the lattice distortion. A good mixing of the elements is found at the atomic scale. For some compounds, a distribution of distances between the central atom and its neighbors suggests a distortion of the structure. Finally, analysis of the Debye-Waller parameters shows some correlation with the lat- tice distortion parameter δ², and allows to quantify experimentally the static disorder in medium entropy alloys. KW - BAMline KW - Refractory alloys KW - EXAFS KW - Debye-Waller parameter PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114532 SN - 1359-6462 VL - 211 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-55287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -