TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fischer, Janina T1 - Suspensionsarray-Fluoreszenzimmunoassay zur Multiplexbestimmung von SARS-CoV-2-Antikörpern N2 - Übergeordnetes Ziel der Arbeit war die Entwicklung und Optimierung eines Suspensionsarray-Fluoreszenzimmunoassays (SAFIA) für die simultane Bestimmung verschiedener gegen SARS-CoV-2-Proteine gerichtete Antikörper mittels Multiplexdetektion in komplexen Matrices wie humanen Blutserumproben. KW - SARS-CoV-2 KW - Corona KW - COVID-19 KW - Coronavirus KW - Virus KW - Spike-Protein KW - Nucleocapsid-Protein KW - RBD KW - SAFIA KW - LFIA KW - ELISA KW - Partikel KW - Mutationen KW - Neutralisierende Antikörper KW - Durchflusszytometrie KW - ACE2 PY - 2022 SP - 1 EP - 99 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 SP - 1 EP - 4 AN - OPUS4-55106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine (TMB) in Amperometric Assays N2 - Electrochemical methods make great promise to meet the demand for user-friendly on-site devices for monitoring important parameters. Food industry often runs own lab procedures, e.g. for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with miniaturized technologies. Enzyme-linked immunosorbent assays, with photometric detection of the horseradish peroxidase (HRP) substrate, 3,3’,5,5’-tetramethylbenzidine (TMB), form a good basis for sensitive detection. To provide a straight-forward approach for the miniaturization of the detection step, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. It was found that screen-printed gold electrodes and a highly acidic pH value (pH 1) are well-suited to perform the electrochemical detection of TMB, due to the reversible character of the redox reaction under these conditions. This set-up provides a good signal stability over several measuring cycles, providing the basis for analysing multiple samples. In contrast to this, for carbon screen-printed electrodes, it was found that the signal response has changed after the electrochemical reaction with TMB at pH 1. At a weakly acidic pH value (pH 4), neither with carbon nor with gold electrodes a reproducible electrochemical detection of TMB could be achieved [1]. Based on these findings we created a smartphone-based, electrochemical, immunomagnetic assay for the detection of ochratoxin A and ergometrine in real samples. Therefore, a competitive assay was performed on magnetic beads using HRP and TMB/H2O2 to generate the signal. Enzymatically oxidized TMB was quantified after addition of H2SO4 by amperometry with screen-printed gold electrodes in a custom-made wall-jet flow cell. The results are in good correlation with the established photometric detection method, providing a solid basis for sensing of further analytes in HRP-based assays using the newly developed miniaturized smartphone-based, electrochemical, immunomagnetic assay. T2 - Electrochemistry 2022 CY - Berlin, Germany DA - 28.09.2022 KW - Cylic Voltammetry KW - Immunoassay KW - TMB KW - Amperometry PY - 2022 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-55876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Jacobsen, Lars A1 - Frick, Daniel A1 - Schmidt, Anita A1 - Leonhardt, Robert A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Frick, D. A1 - Jacobsen, L. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - Atomic absorption spectroscopy and machine learning for lithium isotopic study N2 - The isotopic analysis of lithium is also relevant to the study of geological phenomena.1 In this work we propose improvements to the method for the isotopic analysis of lithium using a high-resolution continuum source atomic absorption spectrometer (HR-CS-AAS) coupled to a double echelle modular spectrometer (DEMON). 2 This tool for isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←2 2S electronic transition around 670.788 nm. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm. For the training of the algorithm (XGBoost), a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol-1 was used. Subsequently, the procedure was validated of a set of stock chemicals (Li2CO3, LiNO3, LiCl and LiOH) and a BAM candidate reference material, the cathode material LiNi1/3Mn1/3Co1/3O2 (NMC111). Finally, the ML model was applied to the set of geological samples, previously digested, for the determination of their isotope ratio. The optical resolution was improved from 140,000 to 790,000 to better deconvolution the lithium isotopic components in the atomic spectrum. And the method was compared with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results are metrologically comparable. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium isotope KW - Atomic absorption spectroscopy PY - 2022 AN - OPUS4-56357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khanipour, Peyman T1 - Real time mass spectrometry - From Unravelling Electrochemical Reaction Mechanism to Trace Analysis of Impurities in Hydrogen Gas N2 - Climate change and related energy policies, exacerbated by unforeseen geopolitical developments, pose new challenges for gas analytics, such as the use of hydrogen, hydrogen-containing alternative gaseous fuels (NH3, etc.), the use of alternative methane-based energy gases (LNG, LPG, etc.) or decarbonisation via CCSU. In all topics, the quality, i.e. the actual chemical composition of the gases, naturally plays a decisive role. BAM is meeting this strategic importance with the further development of hydrogen analytics and is continuing to develop the methods used in order to support the German economy and research landscape with traceability, reference materials and analytical procedures as quickly as possible. Mass spectrometry plays an important role for trace analysis in hydrogen matrix. The presentation shows first experimental results from the application of PTR-TOF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry). T2 - 11th International GAS Analysis Symosium & Exhibition CY - Paris, France DA - 17.05.2022 KW - Gas Analysis KW - Hydrogen KW - Metrology KW - Mass Spectrometry KW - Trace Analysis PY - 2022 AN - OPUS4-56589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lilensten, L. A1 - Provost, K. A1 - Perrière, L. A1 - Fonda, E. A1 - Couzinié, J. A1 - Amman, F. A1 - Radtke, Martin A1 - Dirras, G. A1 - Guillot, I. T1 - Experimental investigation of the local environment and lattice distortion in refractory medium entropy alloys N2 - EXAFS analysis of pure elements, binary and ternary equiatomic refractory alloys within the Nb-Zr-Ti-Hf- Ta system is performed at the Nb and Zr K-edges to analyze the evolution of the chemical local environ- ment and the lattice distortion. A good mixing of the elements is found at the atomic scale. For some compounds, a distribution of distances between the central atom and its neighbors suggests a distortion of the structure. Finally, analysis of the Debye-Waller parameters shows some correlation with the lat- tice distortion parameter δ², and allows to quantify experimentally the static disorder in medium entropy alloys. KW - BAMline KW - Refractory alloys KW - EXAFS KW - Debye-Waller parameter PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114532 SN - 1359-6462 VL - 211 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-55287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan T1 - Big to Small - Getting Smarter@BAMline N2 - In this talk an overview about artificial intelligence/machine learning applications @BAMline is given. In the first part, the use of neural networks for the quantification of XRF measurements and the decoding of coded-aperture measurements are shown. Then it is shown how Gaussian processes and Bayesian statistics can be used to achieve an optimal alignment of the set-up and in general for optimization of measurements. T2 - Forschungsseminar Institut für Optik und Atomare Physik TU Berlin CY - Berlin, Germany DA - 25.10.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - Neural network KW - BAMline KW - Synchrotron PY - 2022 AN - OPUS4-56249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - From Egypt to Hiddensee – Analysis of Gold with Synchrotron Radiation IV N2 - Gold is one of the seven metals already known in antiquity and was used from time immemorial as a medium of exchange and for the production of jewelry because of its luster and rarity. In addition, it is easy to work and largely resistant to chemical influences. Investigations of gold using synchrotron radiation excited X-ray fluorescence analysis are non-destructive and provide information about the chemical elements present in the sample under investigation. The investigations presented here at BAMline focus on questions such as the origin, manufacturing process, and association of gold findings. The different questions are explained by a number of examples ranging from the Viking treasure from Hiddensee to the Nebra Sky Disk and finds from Egypt. The find from Bernstorf is discussed in detail. A Bayesian treatment of the authenticity is shown. T2 - Ringvorlesung Einführung in die Archäometrie CY - Berlin, Germany DA - 04.11.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - Röntgenfluoreszenz PY - 2022 AN - OPUS4-56252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - News from the BAMline N2 - A presentation of recent measurements at the BAMline with focus on AI and ML applications T2 - Seminar: Strahlenphysikalische Anwendungen in Technik und Medizin CY - Vienna, Austria DA - 18.05.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - X-ray fluorescence PY - 2022 AN - OPUS4-56253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana T1 - Getting more efficient – The use of Bayesian optimization and Gaussian processes at the BAMline N2 - For more than 20 years, BAM is operating the BAMline at the synchrotron BESSY II in Berlin Adlershof. During this time, the complexity of the setup and the amount of data generated have multiplied. To increase the effectiveness and in preparation for BESSY III, algorithms from the field of machine learning are increasingly used. After a short introduction to BO and GP, the first example is the automatic alignment of our double multilayer monochromator (DMM). The second example is the optimization of measurement time in XRF scanning. T2 - SNI2022 conference CY - Berlin, Germany DA - 05.09.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - X-ray fluorescence KW - BAMline PY - 2022 AN - OPUS4-56255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferreira Camoes Liestmann, Zoe T1 - Development of an electrochemiluminescence immunoassay for selected pathogens in wastewater N2 - The outbreak of SARS-CoV-2 in December of 2019, led to a worldwide still on-going pandemic. Since then, several so-called waves of SARS-CoV-2 infections, a time period with a high and fast rising number of new infections, have occurred all over the world. Classic surveillance approaches are hardly applicable, and further, non-detected cases cannot be covered by them. Wastewater-based Epidemiology (WBE) was proven to be a reliable tool for the prediction of new SARS-CoV-2 infection waves, due to the discharge of virus particles in fecal shedding of infectious people. Until now, for the monitoring of SARS-CoV-2 in wastewater, Polymerase Chain Reaction (PCR) is used as analytical tool. Even though PCR is a highly sensitive analytical tool, is presents several disadvantages, such as the need for trained personnel, specific technical equipment, as well as a difficult performance. An analytical tool, to which these disadvantaged do not apply, are immunoassays. In this work, a sandwich Enzyme-Linked Immunosorbent Assay (ELISA), with the immobilization of the capture antibodies on the surface of a Microtiter Plate (MTP), as well as a sandwich Magnetic Bead-Based Assay (MBBA), with immobilization of the capture antibodies on the surface of Magnetic Beads (MBs), targeting the SARS-CoV-2 N-protein, were developed and optimized. Both assay formats were performed with a colorimetric and chemiluminescent detection. The developed assay is composed of the two monoclonal antibodies (mAb) AH2 and DE6 - which was biotinylated in the course of the work - which bind to two different epitops of the antigen N-protein. As tracer, Neutravidin-HRP was used, which binds, through interaction of the Neutravidin with the biotin, to the mAb DE6-Biotin. The assay development and optimization procedure included the investigation of the surface saturation with the mAb AH2, the concentration and dilution of the mAb DE6-Biotin and Neutravidin-HRP, the ideal MBs, the ideal coating as well as dilution buffers, and the colorimetric and chemiluminescent substrates. For the developed and fully optimized colorimetric ELISA, a test midpoint x0 of 388 μg/L, for the chemiluminsecent ELISA of 371 μg/L, for the colorimetric MBBA of 251 μg/L and for the chemiluminescent MBBA of 243 μg/L was obtained. Validation of the colorimetric MBBA was done by measurement of three wastewater samples collected at the Wastewater Treatment Plant (WWTP) Potsdam. Whilst no N-protein could be detected in the samples, by spiking of the wastewater samples with certain concentrations of the N-protein, 10- to 18-times lower concentrations could be back-calculated, which can be attributed to matrix-effects of the wastewater sample. Next to the matrix-effects, also several other reason exist, why no N-protein could be determined in the samples. Because of that, further investigation of the handling, and the measurement of the wastewater samples, as well as the improvement of the assay sensitivity through further optimization steps or exchange of the antibodies, is still necessary. KW - SARS-CoV-2 KW - ELISA KW - Antibody KW - N-capsid PY - 2022 SP - 1 EP - 102 PB - Technischen Universität München CY - München AN - OPUS4-57744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - He, Y. A1 - Zhu, R. A1 - Cai, Y. A1 - Zhang, Y. A1 - Zhang, Y. A1 - Pan, S. A1 - Zhang, Y. T1 - Transcriptomics and protein biomarkers reveal the detoxifying mechanisms of UV radiation for nebivolol toward zebrafish (Danio rerio) embryos/larvae N2 - Nebivolol (NEB), a β-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems. KW - Biomarker KW - Pharmazeutika KW - Toxikologie KW - UV Bestrahlung KW - Zebrafisch KW - Transformationsprodukte PY - 2022 DO - https://doi.org/10.1016/j.aquatox.2022.106241 SN - 0166-445X VL - 249 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-55559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray scattering for nanostructure quantification, and the quest for the perfect experiment N2 - Measuring an X-ray scattering pattern is relatively easy, but measuring a steady stream of high-quality, useful patterns requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration). With the MOUSE, we have combined a comprehensive and highly automated laboratory workflow with a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. This talk will briefly introduce the foundations of X-ray scattering, present the MOUSE project, and will highlight the proven utility of the methodology for materials science. Upgrades to the methodology will also be discussed, as well as possible avenues for transferring this holistic methodology to other instruments T2 - SNI 2022 CY - Berlin, Germany DA - 05.09.2022 KW - Methodology KW - X-ray scattering KW - Laboratory management KW - Instrumentation utilization KW - MOUSE KW - SAXS KW - WAXS KW - Automation PY - 2022 AN - OPUS4-55760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Kulow, A. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Fittschen, U. E. A. A1 - Hampel, S. T1 - Energy Resolved Imaging with Coded Apertures N2 - Our aim is to develop a simple and inexpensive method for full field X-ray fluorescence imaging.We combine an energydispersive array detector with a coded aperture to obtain high resolut ion images. To obtain the information from the recorded image a reconstruction step is necessary. The reconstruction methods we have developed, were tested on simulated data and then applied to experimental data. The first tests were carried out at the BAMline @BESSY II. This method enables the simultaneous detection of multiple elements,which is important e.g. in the field of catalysis. T2 - SRI 2021 CY - Online meeting DA - 28.3.2022 KW - Synchrotron KW - BAMline KW - Machine Learning KW - Coded Aperture PY - 2022 AN - OPUS4-56298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Margreiter, R. A1 - Baumann, J. A1 - Mantouvalou, I. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Strub, E. T1 - Investigations on fire-gilding N2 - Fire-gilding is a historic technique for the application of golden layers on a number of different base materials utilizing a gold amalgam. This technique leaves a significant amount of Hg in the golden layer, giving archeometrists a reliable indicator to identify firegildings. Recent findings on presumably fire-gilded objects have shown in several cases significantly lower Hg content than previously studied objects. This prompted a synchrotron-based X-ray fluorescence investigation into the Hg distribution along the material–gilding interface, as well as a series of measurements regarding the Hg content development in fire-gilded samples during artificial aging. This work presents findings on laboratory-prepared fire-gildings, indicating an Hg enrichment at the interface of firegilded silver samples. Notably, such an enrichment is missing in fire-gilded copper samples. Further, it is confirmed that fire-gilded layers typically do not undercut an Hg bulk content of 5%. In this light, it seems improbable that ancient samples that contain <5% Hg are fire-gilded. The results presented in this study might lead to a non-destructive method to identify the Hg enrichment at the interface. This might be obtained by a combination of different non-destructive measurements and might also work unambiguously in samples in which the gold top layer is altered. KW - BAMline KW - X-Ray Fluorescence KW - Gilding KW - Depth profile KW - Archaeometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552885 DO - https://doi.org/10.1111/arcm.12797 SN - 0003-813X SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-55288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Diffusive Gradients in Thin-films (DGT) technique as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS-MS quantification. However, for screening of PFAS contaminations in sewage sludge or wastewater-based fertilizers also passive sampler based on the Diffusive Gradients in Thin-films (DGT) technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyse the “total” amount of PFAS on the passive sampler. Here, we show results from the DGT method in comparison to those of the extractable organic fluorine (EOF) method for a variety of wastewater-based fertilizers. Additionally, we analysed the adsorption of PFAS on the weak anion exchanger (WAX) based DGT passive sampler binding layer by infrared and fluorine K-edge X-ray adsorption near-edge structure (XANES) spectroscopy. T2 - SETAC Europe 2022 CY - Copenhagen, Denmark DA - 15.05.2022 KW - Passive sampling KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Wastewater PY - 2022 AN - OPUS4-54883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H nuclear magnetic resonance (qNMR) of aromatic amino acids for protein quantification N2 - qNMR is a valuable technique for metrological studies due to the uniformity of its signal response for all chemical species of an isotope of interest, which enables compound-independent calibration. However, protein quantification remained challenging as large molecules produce wide, low-intensity signals that reduce the already low sensitivity. Combining qNMR with the hydrolysis of protein samples into amino acids circumvents many of these issues and facilitates the use of NMR spectroscopy for absolute protein and peptide quantification.In this work, different conditions have been tested for quantifying aromatic amino acids and proteins. First, we examined the pH-based signal shifts in the aromatic region. The preferable pH depends on the selection of the amino acids for quantification and which internal standard substance should be used to avoid peak overlap. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, have been applied as internal standards. The quantification of amino acids from an amino acid standard, as well as from a certified reference material (bovine serum albumin), was performed. Using the first two suggested internal standards, recovery was ~ 97 % for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98 ± 2 and 88 ± 4 %, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - AAA KW - Protein hydrolysis KW - Metrology KW - Traceability KW - Reference materials KW - Internal standards KW - Calibration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564520 DO - https://doi.org/10.20944/preprints202211.0569.v1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-56452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg ED - Holm, O. ED - Thomé-Kozmiensky, E. ED - Quicker, P. ED - Kopp-Assenmacher, S. T1 - Per- und polyfluorierte Alkylsubstanzen (PFAS) im Klärschlamm N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of more than 4700 anionic and cationic anthrophonic substances which have been used extensively in a variety of products and industries due to their inert chemical stability and resistance to degradation by heat or acids. As a result of continuous use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil and groundwater resources. However, because of the continuous use of fluorinated consumer products, also effluents and sewage sludge from wastewater treatment plants (WWTPs) have been shown to be an important source of PFAS contamination into the aquatic environment. Resulting from recent stricter regulations and restrictions in the last years on the use of long chain (≥C8) PFAS, there is a significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) chain alternatives. With the amendment of the Sewage Sludge Ordinance in 2017 the German legislation banned sewage sludge application on agricultural land, and by 2029/2032 sewage sludge will be completely prohibited from agricultural application. While environmental exposure of organic pollutants like PFAS, pesticides and pharmaceuticals are no longer desirable, phosphorus (P) from sewage sludge must still be used to produce high-quality P-fertilizers for a circular economy. Currently, plant-available P-fertilizers from sewage sludge/wastewater can be produced using a variety of treatment approaches including precipitation, leaching, and thermal treatment. However, the fate of legacy and emerging PFAS compounds during P leaching, precipitation and treatment from sewage sludge and wastewater is for the most parts still unknown. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Klärschlamm KW - Düngemittel PY - 2022 SN - 978-3-944310-65-7 SP - 270 EP - 279 PB - Thomé-Kozmiensky Verlag GmbH CY - Neuruppin AN - OPUS4-56290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Per- und polyfluorierte Alkylsubstanzen (PFAS) im Klärschlamm - Analytische Methoden und Grenzwerte N2 - Per- und Polyfluoralkylsubstanzen (PFAS) sind eine Gruppe von mehr als 4700 anionischen und kationischen anthrophonen Stoffen, die aufgrund ihrer inerten chemischen Stabilität und ihrer Widerstandsfähigkeit gegen den Abbau durch Hitze oder Säuren in einer Vielzahl von Produkten verwendet werden. Infolge der ständigen Verwendung, vor allem in Feuerlöschschäumen für die Luftfahrt, wurden in Tausenden von Industrie- und Militäranlagen kontaminierte Böden und Grundwasservorkommen gefunden. Aufgrund der ständigen Verwendung von fluorierten Konsumgütern haben sich jedoch auch Abwässer und Klärschlamm aus Kläranlagen als Quelle für die Kontamination der aquatischen Umwelt mit PFAS erwiesen. Infolge der strengeren Vorschriften und Beschränkungen, die in den letzten Jahren für die Verwendung langkettiger (≥C8) PFAS erlassen wurden, findet in der chemischen Industrie eine deutliche Verlagerung hin zur Herstellung kurz- (C4-C7) und ultrakurzkettiger (C1-C3) Alternativen statt. Mit der Novellierung der Klärschlammverordnung im Jahr 2017 hat der deutsche Gesetzgeber die Ausbringung von Klärschlamm auf landwirtschaftlichen Flächen verboten, und bis 2029/2032 wird die Ausbringung von Klärschlamm in der Landwirtschaft vollständig verboten sein. Während die Belastung der Umwelt mit organischen Schadstoffen wie PFAS, Pestiziden und Arzneimitteln nicht mehr erwünscht ist, muss Phosphor (P) aus Klärschlamm weiterhin zur Herstellung hochwertiger P-Dünger für eine Kreislaufwirtschaft genutzt werden. Derzeit können pflanzenverfügbare P-Düngemittel aus Klärschlamm/Abwasser mit verschiedenen Behandlungsmethoden hergestellt werden, darunter Fällung, Auslaugung und thermische Behandlung. Der Verbleib von PFAS bei der Auslaugung, Ausfällung und Behandlung von Klärschlamm und Abwasser ist jedoch noch weitgehend unbekannt. T2 - Berliner Klärschlammkonferenz CY - Berlin, Germany DA - 14.11.2022 KW - Klärschlamm KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Phosphor KW - Düngemittel PY - 2022 AN - OPUS4-56291 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Wittwer, Phillip A1 - Roesch, Philipp A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples N2 - Here, we describe an optimized fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) in soils utilizing high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR–CS–GFMAS). To omit the bias of the solid phase extraction (SPE) step commonly used during the analysis of extractable organically bound fluorine (EOF) we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol without any additional SPE. Four extraction steps were representative to determine a high proportion of the EOF (>80% of eight extractions). Comparison of the optimized method with and without an additional SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. Differences of up to 94% were observed which were not explainable by coextracted inorganic fluoride. Therefore, not only a more accurate but also a more economic as well as ecologic method (bypassing of unnecessary SPE) was developed. The procedural limit of quantification (LOQ) of the developed method was 10.30 μg/kg which was sufficient for quantifying EOF concentrations in all tested samples. For future PFAS monitoring and potential regulative decisions the herein presented optimized extraction method can offer a valuable contribution. KW - Per- and polyfluorinated alkly substances (PFASs) KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soils KW - Solid phase extraction (SPE) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2022 DO - https://doi.org/10.1016/j.chemosphere.2022.133922 VL - 295 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-54359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -