TY - CONF A1 - Heinrich, Hans-Joachim A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - Certification of the mass fractions of trace elements in a medium purity graphite reference material N2 - The increasing application of graphite materials in various fields of technology and science enhances the demand for strictly controlled properties which are often directly correlated to the contents of trace element impurities. Therefore, the availability of powerful, rapid and reliable analytical methods for the determination of trace impurities is essential for process and quality control. Certified reference materials, indispensable for the development and validation of appropriate trace analytical methods for the characterization of special purity graphite materials are still lacking. Therefore, BAM in co-operation with the working group “Special Materials” of the committee of chemists of GDMB (Gesellschaft der Metallurgen und Bergleute e.V.) certified an industrially sourced graphite material with genuine elemental impurities. The candidate material was a commercial product (NBG 18) taken from the customary production line of the producer SGL CARBON, Chedde (France). The homogeneity of the powdered material was assessed by means of ETV-ICP OES and DC Arc-OES. Certification of the candidate reference material was based on an inter-laboratory comparison involving 17 expert laboratories from Germany, France, Slovenia, USA, South Africa. A variety of different mineralization, digestion, leaching, fusion and combustion techniques prior to ICP OES and photometry, methods without sample preparation (INAA, k0-INAA) as well as typical solid sampling methods (ETV-ICP OES, ETV-ICP-MS, SS-ET AAS, DC Arc-OES, MF-DC Arc-OES) were used to characterise the material. Certified mass fractions and their expanded uncertainties (k = 2) were assigned for 27 elements (Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Ti, V, W, Y, Zn, Zr), ranging from (0.00050 ± 0.00027) mg/kg for Be to (41 ± 6) mg/kg for Si. Informative values are given for further parameters: trace element contents of Ag, As, Au, Bi, Cd, Cs, Dy, Eu, Ga, Gd, Hg, In, La, Nb, Rb, Re, Rh, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U; method specific values obtained by ETV-ICP OES (BETV and SiETV) and ash content. The new certified material is available as BAM Reference Material BAM-S009 Medium Purity Graphite Powder. T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Certification KW - Graphite KW - Reference material KW - Trace elements PY - 2018 AN - OPUS4-46235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Recknagel, Sebastian T1 - The USE of GDMS in the certification procedure of reference materials N2 - Reference materials are essential, when the accuracy and reliability of measurement results need to be guaranteed in order to generate confidence in the analysis. These materials are frequently used for determining measurement uncertainty, for validation of methods, suitability testing and quality assurance. Especially direct solid sampling methods require reference materials for calibration. They guarantee that measurement results can be compared to recognized reference values. This presentation gives an overview about the use of GDMS in various certification procedures. Because it represents a fast, sensitive, multielement analyses technique without extensive sample preparation it plays a special role for the purity determination of high purity standards. Various calibration strategies and the preparation of traceable matrix matched calibration standards will be discussed. For the certification of analyte content in matrix materials mainly techniques with solvent sample preparation are used. Here GD-MS is used to identify possible loss or contamination with analytes during the sample preparation step. Typically used acids to dissolve matrices lead to interferences in the ICP- mass spectrometric detection of various analytes and their quantification. Here GD-MS as direct method can also add an important contribution in the certification process. T2 - 4th IGDSS CY - Berlin, Germany DA - 15.04.2018 KW - GDMS KW - Reference materials PY - 2018 AN - OPUS4-46222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Silke A1 - Kipphardt, Heinrich A1 - Recknagel, Sebastian A1 - Pfeifer, Jens T1 - Characterisation of a high purity nickel material to be used as a primary standard for element determination N2 - A candidate material for the use as primary standard for nickel determination was characterized with respect to total purity. For element determination a pure material can serve as primary standard. However, real world materials are never absolutely pure, hence the total purity of such materials need to be determined experimentally. A reasonable target uncertainty for the purity statement is 10-4 relative. Usually, the purer the material, the easier it is to achieve this target uncertainty. There are two basic ways in order to be able to establish a total purity statement. One is to determine the main component of a high purity material by a direct method such as coulometry, gravimetry or titrimetry. However, these methods are not selective enough for one element and therefore require certain efforts to analyse the material with respect to impurities with interfering analytes. Moreover, to reach the defined target uncertainty is not easy or often impossible to achieve. The second approach is to determine the sum of all possible impurities (as mass fraction) and to subtract it from the ideal purity of 100 % (1 kg/kg). In principle all impurities (all elements not being the matrix element), metals and non-metals must be considered. In this work both approaches to determine the total purity of the nickel material were followed and compared. The primary (solid) standards are usually used to prepare primary calibration solutions to which secondary and lower order calibration solutions are linked. T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Primary standard KW - High purity material KW - Nickel PY - 2018 AN - OPUS4-46216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Following fluorinated drugs by molecular absorption spectrometry – from cancer cells to body fluids N2 - Fluorine has been widely introduced into pharmaceutical drugs. Due to the high C-F bond strength, a single atom substitution with fluorine produces drastic desirable and tunable changes in the molecular properties. However, the clinical monitoring of these drugs is not straightforward. Organofluorine compounds are elusive for a non-targeted analysis; a significant problem in fluorine determination is the lack of suitable detection techniques. Standard atomic absorption and emission spectrometers cannot access fluorine, because their resonance lines lie in the VUV spectral range below 100 nm. In the case of conventional inductively coupled argon plasmas (ICP), the plasma energy is too low to generate a significant population of excited fluorine atoms. Recently, our group introduces high-resolution continuum source absorption spectrometry (HR-CS MAS) as a new way for the indirect monitoring of fluorinated compounds. Main benefits of HR-CS-MAS includes low limits of detection, complete analyte recovery, simple to no sample preparation, and short time analysis. T2 - 16th Annual Congress of International Drug Discovery Science and Technology 2018 CY - Cambridge, MA, USA DA - 16.08.2018 KW - Fluorine KW - Anti-cancer KW - Capecitabine KW - Fluorouracil KW - HR-CS-MAS PY - 2018 AN - OPUS4-45822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable Isotope Analysis Using Molecular Absorption Spectrometry N2 - We propose an alternative faster and low-cost optical method for isotope analysis: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr were determined by monitoring the absorption spectra of their in situ generated mono-hydrides (XH) in graphite furnace HR-CS-MAS. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results with an accuracy of 0.15 ‰ are metrologically compatible with those reported by mass spectrometric methods. Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved as shown in Fig.1b. The extension of this methodology to other elements like Li, Ca and Sr is discussed. T2 - Goldschmidt Conference 2018 CY - Boston, MA, USA DA - 12.08.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis via hydrides using molecular absorption spectrometry N2 - Small variations in the isotopic composition of some elements have been used as proof of provenance of mineral and biological samples, to describe geological processes, and to estimate a contamination source. Routinely, isotope compositions are measured by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time-consuming and they require a high qualified analyst. Here, an alternative faster and low-cost optical method for isotope ratio determination is investigated: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr have been determined by monitoring the absorption spectra of their in situ generated hydrides (XH) in graphite furnace HR-CS-MAS. For example, the system of two stable isotopes of boron (10B and 11B) was studied via its hydride for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, isotopic composition of samples and reference materials are calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results are metrologically compatible with those reported by mass spectrometric methods. [1] Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shift of their isotopologues can be resolved as shown in Fig.1 b. The extension of this methodology to other elements like Li, Ca and Sr is discussed [2]. References: [1] C. Abad, S. Florek, H. Becker-Ross, M.-D. Huang, H.-J. Heinrich, S. Recknagel, J. Vogl, N. Jakubowski, U. Panne, Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta, Part B, 136 (2017) 116-122. [2] C. Abad et al., unpublished results, 2018. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Optical spectrometry versus mass spectrometry for stable isotope analysis of B and Mg N2 - Mass spectrometric methods (MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. We propose a lower-cost and faster optical alternative for the analysis of isotope ratios of selected elements: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated mono-hydrides and halide (MH and MX) using graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. The extension of this methodology to other elements like Li, Ca, Cu, and Sr is discussed. T2 - 13. Symposium „Massenspektrometrische Verfahren der Elementspurenanalyse“ zusammen mit dem 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Isotope KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Boron monohydride KW - Magnesium monofluoride KW - Molecular absorption spectrometry PY - 2018 AN - OPUS4-45868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -