TY - JOUR A1 - Winckelmann, Alexander A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of matrix effects in nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry (MICAP-MS) for trace element analysis in steels N2 - We investigated the performance of nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry (MICAP-MS) under matrix effects and its applicability to trace element analysis in steels. Influences of different gas flows and ion optics on the matrix tolerance are studied, indicating that nebulizer gas flow has the most significant impact. Optimization of ion optics improves matrix tolerance for light elements due to the reduction of the inelastic collisional scattering effect. With optimized operating conditions, MICAP-MS achieves an internal standard intensity recovery of over 90% at an Fe concentration of 500 mg L−1. Even at an Fe concentration of 1 g L−1, the recovery remains above 80%. Three certified reference materials – non-alloy, low-alloy and high-alloy steel – were analyzed using MICAP-MS. The determined mass concentrations of the trace and minor components show metrological compatibility to the reference values. No significant differences are observed between the results obtained with aqueous and matrix-matched calibration, demonstrating the strong matrix tolerance of MICAP-MS, and its promising applicability to steel analysis. KW - MICAP-MS KW - Trace Analysis KW - Steel PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576323 DO - https://doi.org/10.1039/d3ja00088e SN - 0267-9477 VL - 38 IS - 6 SP - 1253 EP - 1260 PB - Royal Society of Chemistry AN - OPUS4-57632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - How does solid microanalysis profit from innovations in EUV research N2 - Research into new sources for EUV lithography is driving advancements in experimental methods tailored for this short wavelength range. This progress enables the exploration of spectroscopic techniques aimed at monitoring electronic transitions within this energy spectrum. Laser-induced breakdown spectroscopy (LIBS) serves as a rapid tool for elemental analysis, primarily established in the UV-vis range. However, LIBS encounters challenges such as limited repeatability precision and elevated background noise resulting from continuum radiation. In parallel, laser-induced extreme UV spectroscopy (LIXS) delves into the initial stages of plasma evolution, characterized by the emergence of soft X-ray and extreme UV radiation. The method benefits from a fast timeframe and constrained plasma confinement, leading to better precision. Nevertheless, LIXS encounters convoluted spectra arising from unresolved transition arrays (UTA), particularly pronounced for heavier elements. This complexity renders conventional univariate data analysis impractical, demanding the adoption of a multivariate data analysis approach. Multiple cathode samples, each coated with varying stoichiometries of lithium nickel manganese cobalt oxide (NMC), were prepared and used for calibration purposes. Through the application of Partial Least Squares (PLS) regression, a robust correlation with an R2 value exceeding 0.97 was achieved. The LIXS technique underwent a comparative evaluation against UV-vis LIBS. Furthermore, a comparison between univariate and multivariate analysis approaches was conducted, incorporating validation through y-randomization to mitigate overfitting risks. The viability of this approach was confirmed through the testing of an NMC reference material. The results showed metrological compatibility with reference values, underscoring the potential capability of the proposed methodology. T2 - 322. PTB Seminar 2023 - VUV and EUV Metrology CY - Berlin, Germany DA - 14.11.2023 KW - Laser induced XUV spectroscopy KW - Lithium-ion batteries KW - Solid microanalysis PY - 2023 UR - https://www.euv2023.ptb.de/ AN - OPUS4-58834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - Study of lithium-ion battery aging using laser-induced XUV spectroscopy (LIXS) N2 - Laser-induced XUV spectroscopy (LIXS) is an emerging technique for elemental mapping. In comparison to conventional laser-induced breakdown spectroscopy in UV-vis (LIBS), it has a higher precision and wider dynamic range, and it is well suited for the quantification light elements like lithium and fluorine. Further it can spot oxidation states. The XUV spectra are produced at a very early stage of the plasma formation. Therefore, effects from plasma evolution on the reproducibility can be neglected. It has been shown, that high-precision elemental quantification in precursor materials for lithium-ion batteries (LIBs) can be performed using LIXS. Based on these results, LIXS mapping was used to investigate aging processes in LIBs. Different cathode materials with varying compositions of fluorine containing polymer binders were compared at different stages of aging. Due to effects comparable to X-ray photoelectron spectroscopy but in reverse, monitoring of changes in the oxidation state is envisioned, which makes information about the chemical environment of the observed elements accessible. The combination of elemental distribution and structural information leads to a better understanding of aging processes in LIBs, and the development of more sustainable and safe batteries. T2 - Conference on Applied Surface and Solid Material Analysis - AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - Multivariate data analysis for laser-induced XUV spectroscopy (LIXS) N2 - The application of multivariate data analysis is essential in extracting the full potential of laser-induced XUV spectroscopy (LIXS) for high-precision elemental mapping. LIXS offers significant advantages over traditional laser-induced breakdown spectroscopy in UV-vis (LIBS), including higher precision and a wider dynamic range,[1,2] while making it possible to determine light elements like lithium and fluorine. However, it is challenged by the presence of unresolved transition arrays (UTAs) for heavier elements. These UTAs add considerable complexity to the spectral data, often concealing crucial information. In this study, we employ well-established multivariate data analysis techniques and intensive data preprocessing to unravel this contained information. The refined analysis reveals a high level of detail, enabling the precise identification of inhomogeneities within material samples. Our approach has particular relevance for studying aging processes in lithium-ion batteries (LIBs), specifically in relation to varying cathode materials and fluorine-containing polymer binder content. By combining elemental distribution with structural information, this improved method can offer a more comprehensive understanding of sample inhomogeneities and aging processes in LIBs, contributing to the development of more reliable and sustainable battery technologies. T2 - Berliner Chemie in Praxis Symposium - BCPS 2023 CY - Berlin, Germany DA - 06.10.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Riedel, Jens A1 - Okumura, M. T1 - Anwendung von hochauflösender optischer Spektrometrie zur Lithium-Isotopenanalyse N2 - Optische Spektrometrie wird als Alternative zur Massenspektrometrie im Bereich der Lithium-Isotopenanalyse vorgestellt. T2 - 11. Analytische Tage CY - Idstein, Germany DA - 11.05.2023 KW - Lithium KW - Isotopenanalyse KW - Atomabsorptionsspektrometrie KW - Massenspektrometrie PY - 2023 AN - OPUS4-57543 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of aluminum current collector degradation in lithium-ion batteries using glow discharge optical emission spectrometry N2 - In this work, we employed glow discharge optical emission spectrometry (GD-OES) depth profiling as a fast and semi-quantitative method to investigate the aluminum (Al) current collector degradation in commercial lithium cobalt oxide (LCO) pouch cells with no Al2O3 pretreatment. After battery aging, a heterogeneous deposit was found on the surface of the cathode. Gray hotspot areas within an extensive pale white region were formed. Consistent with energy dispersive X-ray (EDX) analysis of micro-cross sections milled via targeted focused ion beam (FIB), an Al-containing layer of approximately 3 µm can be observed using GD-OES. We attribute one main cause of this layer is the degradation of the Al current collector. The nonuniform growth of this layer was investigated by performing GD-OES depth profiling at different in-plane positions. We found that the gray area has a higher mass concentration of Al, probably in metallic form, whereas the white area was probably covered more homogeneously with Al2O3, resulting from the inhomogeneous distribution of the pitting positions on the current collector. Compared to FIB-EDX, GD-OES enables a faster and more convenient depth profile analysis, which allows the more productive characterization of lithium-ion batteries (LIBs), and consequently benefits the development of preferable battery materials. KW - GD-OES KW - depth profiles KW - Li-ion battery KW - battery aging mechanism KW - current collector corrosion PY - 2023 DO - https://doi.org/10.1016/j.sab.2023.106681 SN - 0584-8547 VL - 205 SP - 106681 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-57383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Winckelmann, Alexander A1 - Roik, Janina A1 - Weisheit, Wolfram A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi-element analysis in different matrices using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry (MICAP-MS) N2 - Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences1. In this work, the applicability of MICAP-MS for elemental analysis in different matrices is investigated. For this purpose, reference soil samples and steel samples are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated with ICP-MS und certified values. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared. Moreover, the performance of MICAP-MS in alloy matrices is investigated and discussed. T2 - EWCPS 2023 CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Steel KW - Nitrogen plasma PY - 2023 AN - OPUS4-56994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Vogel, Kristin T1 - Berechnung und Nutzung von Unsicherheiten zertifizierter Werte von Referenzmaterialien N2 - Referenzmaterialien sind unter anderem ein wichtiges Werkzeug zur Qualitätskontrolle von Messungen bestimmter Merkmalswerte. Dabei ist zu berücksichtigen, dass zertifizierte Merkmalswerte immer eine gewisse Unsicherheit haben. Die Ermittlung dieser Unsicherheitsbeiträge ist Gegenstand des Vortrags. Referenzmaterialien sind gleichzeitig ein wertvolles Werkzeug zur Ermittlung der Unsicherheit von Messverfahren und -Analysen unbekannter Proben. Die Vorgehensweise bei der Ermittlung der Messunsicherheit mit Hilfe eines Referenzmaterials wird beschrieben. T2 - 11. VDI-Fachtagung Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 14.11.2023 KW - Referenzmaterial KW - Messunsicherheit KW - ISO Guide 35 PY - 2023 AN - OPUS4-58946 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Vogel, Kristin T1 - Berechnung und Nutzung von Unsicherheiten zertifizierter Werte von Referenzmaterialien N2 - Referenzmaterialien sind unter anderem ein wichtiges Werkzeug zur Qualitätskontrolle von Messungen bestimmter Merkmalswerte. Dabei ist zu berücksichtigen, dass zertifizierte Merkmalswerte immer eine gewisse Unsicherheit haben. Die Ermittlung dieser Unsicherheitsbeiträge ist Gegenstand des Vortrags. Referenzmaterialien sind gleichzeitig ein wertvolles Werkzeug zur Ermittlung der Unsicherheit von Messverfahren und -Analysen unbekannter Proben. Die Vorgehensweise bei der Ermittlung der Messunsicherheit mit Hilfe eines Referenzmaterials wird beschrieben. T2 - Jahrestagung des GDMB-Chemiker-Ausschusses CY - Kassel, Germany DA - 07.11.2023 KW - Referenzmaterial KW - Messunsicherheit KW - ISO Guide 35 PY - 2023 AN - OPUS4-58929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared T2 - Spectroscopium Colloquium CY - Gijon, Spain DA - 30.05.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Optical spectrometry for isotope analysis N2 - Isotope analysis is a tool for material research. For example, it may provide information about the provenance of a sample or changes in dynamic systems. Here is presented optical spectroscopy as an analytical alternative to mass spectrometry for isotope quantification based on the isotopic shift of atoms and diatomic molecules. T2 - Isotopic Tools for the Investigation of Materials WS 21/22 CY - Leoben, Austria DA - 01.10.2021 KW - Isotopes KW - HR-CS-AAS KW - Lithium KW - Atomic absorption spectrometry KW - Diatomic molecules PY - 2022 AN - OPUS4-56495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Laser spectroscopy methods for calcium isotope analysis N2 - Calcium isotope analysis can be an important tool for paleoclimate studies of the carbon cycle, as well in carbon capture technology, but its utility is limited by challenges using conventional mass spectrometry. We propose a new fast, precise, and high-throughput technology based on multiple complementary high-resolution spectroscopies analyzed by machine-learning. T2 - Seminars Chemical Physics Caltech CY - Pasadena, CA, USA DA - 13.04.2022 KW - Calcium KW - Atomic spectroscopy KW - CaF KW - Calcium monofluoride KW - Carbon cycle KW - Doppler effect KW - Sub-doppler spectroscopy KW - Laser spectroscopy PY - 2022 AN - OPUS4-56499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548407 DO - https://doi.org/10.1007/s00216-022-03996-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandez-Menendez, L. J. A1 - Mendez-Lopez, C. A1 - Abad Andrade, Carlos Enrique A1 - Fandino, J. A1 - Gonzalez-Gago, C. A1 - Pisonero, J. A1 - Bordel, N. T1 - A critical evaluation of the chlorine quantification method based on molecular emission detection in LIBS N2 - The entire process involving the determination of Cl by molecular emission detection in Laser-Induced Breakdown Spectroscopy (LIBS) is thoroughly studied in this paper. This critical evaluation considers how spectra are normalized, how interferences from other molecular species signals are removed, and how signal integration is applied. Moreover, a data treatment protocol is proposed to achieve reliable and accurate Cl determination from the CaCl molecular spectral signal, not requiring the use of more complex numerical approaches. Calcium chloride dihydrate (CaCl2⋅2H2O) and high purity anhydrite samples (CaSO4) are used to optimize the acquisition conditions and data treatment of CaCl emission signal. Using the developed protocol, calibration curves for Cl, covering the concentration range from 0 μg/g to 60,000 μg/g of Cl, are successfully achieved. Finally, the suitability of the proposed methodology for Cl determination is successfully applied in industrial gypsum waste samples, where the results obtained by LIBS are validated using high-resolution molecular absorption spectroscopy (HR-CS-MAS) and potentiometric titration. KW - Laser induced breakdown Spectrocopy (LIBS) KW - Molecular spectra KW - Chlorine determination KW - CaCl emission bands KW - Industrial gypsum PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544292 DO - https://doi.org/10.1016/j.sab.2022.106390 SN - 0584-8547 VL - 190 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-54429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Akkus, Asli A1 - Weisheit, W. A1 - Giray, Thorsten A1 - Penk, Sibylle A1 - Buttler, Sabine A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multielement analysis in soils using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry N2 - In this study, we employed nitrogen microwave inductively coupled atmospheric-pressure plasma (MICAP) combined with quadrupole mass spectrometry (MS) and a liquid sample introduction system to analyze heavy metals in soils. The vanadium, cobalt, nickel, zinc, copper, chromium, arsenic, lead, and cadmium contents in seven reference and three environmental soil samples determined using MICAP-MS were within the uncertainty of the reference values, indicating that MICAP-MS is promising for soil analysis similar to the conventional inductively coupled plasma mass spectrometry (ICP-MS) technique. In addition, the limits of detection (LODs) and sensitivity of both techniques using N2 and Ar plasma were of the same order of magnitude. Furthermore, the performance of MICAP-MS under different N2 purity was investigated, and we found that the plasma formation and ionization efficiency were not influenced by the impurities in the gas. A prominent advantage of MICAP-MS is the low operating cost associated with gas consumption. In this work, MICAP-MS used nitrogen, which is cheaper than argon, and consumed 25% less gas than ICP-MS. Using low-purity N2 can further reduce the gas cost, making MICAP-MS more cost effective than ICP-MS. These results suggest that MICAP-MS is a promising alternative to ICP-MS for the analysis of heavy metals in the soil. KW - Soil KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Nitrogen plasma KW - Multi-element analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561048 DO - https://doi.org/10.1039/d2ja00244b SN - 0267-9477 VL - 37 IS - 12 SP - 2556 EP - 2562 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Advantages of N2-MICAP-MS for Trace Metal Analysis in Steel N2 - The climate and energy crisis are extreme challenges. One possible solution could be hydrogen technology. Safety is a big concern. Steel used for pipelines and storage is under permanent stress from low temperatures and high pressures. The content of different alloyed metals determines the performance of the steel. Nitrogen microwave inductively coupled atmosphere pressure plasma mass spectrometry (N2-MICAP-MS) is a promising method for trace metal analysis in steel. Nitrogen is cheap and can be generated on site. It has fewer interferences than argon. Additionally, MICAP-MS is very matrix tolerant, proving the matrix-matched calibration expendable. Safety in technology and chemistry is the mission of BAM. Providing reference methods and materials can create trust in future technologies like hydrogen. T2 - SALSA Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - Trace analysis KW - Steel KW - Microwave plasma KW - Mass spectrometry KW - Safety PY - 2022 AN - OPUS4-55792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao A1 - Richter, Silke A1 - Benner, Philipp A1 - Recknagel, Sebastian T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by GD-OES N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Empa Group Meeting CY - Dübendorf, Switzerland DA - 22.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Why do I have to charge my phone twice a day? N2 - Aging Mechanisms of Lithium Batteries: How can we make batteries more durable and more sustainable in the future? Lithium batteries are particularly susceptible to ageing processes. During each charging and discharging process in an electric battery, lithium ions are deposited in the electrodes of the cell like in the pores of a sponge. Over time, however, fractures and cracks occur in the filigree structures. The result: more and more lithium ions no longer fit into the hollow spaces of the „sponge“, instead they accumulate in heaps around the electrodes and hinder the movement of other ions. The performance of the battery decreases. We present our new project, in which we are developing a fast and cost-effective method with which companies that produce lithium batteries can already assess the ageing behaviour of their batteries in the laboratory. T2 - Berlin Science Week 2022 CY - Online meeting DA - 10.11.2022 KW - Lithium Ion Batteries KW - Aging Mechanisms PY - 2022 UR - https://berlinscienceweek.com/de/event/why-do-i-have-to-charge-my-phone-twice-a-day/ UR - https://www.youtube.com/watch?v=bF7bQTY49rQ AN - OPUS4-56245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation of certified reference material for the determination of hydrolytic resistance of borosilicate glass is described. Certified properties are the acid consumption according to the relevant standard procedures described in ISO 720, USP<660> and Ph.Eur. 3.2.1. T2 - 26. International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Borosilicate glass KW - CRM KW - Hydrolytic resistance PY - 2022 AN - OPUS4-55521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared. T2 - BAM Adlershofer Kolloquium CY - Online meeting DA - 21.06.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Jacobsen, Lars A1 - Frick, Daniel A1 - Schmidt, Anita A1 - Leonhardt, Robert A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Frick, D. A1 - Jacobsen, L. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - Atomic absorption spectroscopy and machine learning for lithium isotopic study N2 - The isotopic analysis of lithium is also relevant to the study of geological phenomena.1 In this work we propose improvements to the method for the isotopic analysis of lithium using a high-resolution continuum source atomic absorption spectrometer (HR-CS-AAS) coupled to a double echelle modular spectrometer (DEMON). 2 This tool for isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←2 2S electronic transition around 670.788 nm. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm. For the training of the algorithm (XGBoost), a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol-1 was used. Subsequently, the procedure was validated of a set of stock chemicals (Li2CO3, LiNO3, LiCl and LiOH) and a BAM candidate reference material, the cathode material LiNi1/3Mn1/3Co1/3O2 (NMC111). Finally, the ML model was applied to the set of geological samples, previously digested, for the determination of their isotope ratio. The optical resolution was improved from 140,000 to 790,000 to better deconvolution the lithium isotopic components in the atomic spectrum. And the method was compared with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results are metrologically comparable. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium isotope KW - Atomic absorption spectroscopy PY - 2022 AN - OPUS4-56357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian T1 - Analytische Chemie Gusseisen, Gummi, Bodenproben N2 - Die BAM stellt seit über 100 Jahren Referenzmaterialien (RM) her. Seit damals haben sich die Anforderungen an RM stark verändert. Der Artikel gibt einen Einblick in Anforderungen und die Herstellungsweise von Referenzmaterialien. KW - Referenzmaterialien KW - ISO-Guide 35 KW - Boden PY - 2021 SP - 51 EP - 53 AN - OPUS4-53695 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meermann, Björn A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Saatz, Jessica A1 - Traub, Heike A1 - von der Au, Marcus T1 - Mehr Analyten, kleinere Proben N2 - Molekülmassenspektrometrie entwickelt sich weg von klassischer Target- hin zu Nontarget-Analytik. Elementmassenspektrometrie liefert hohe Ortsauflösung beim Element-Imaging und analysiert einzelne Zellen. Aufgrund der Fortschritte bei den Geräten für Timeof-Flight-Massenspektrometrie mit induktiv gekoppeltem Plasma (ICPToF-MS) lässt sich das gesamte Periodensystem der Elemente in kurzen transienten Signalen quasi-simultan massenspektrometrisch erfassen. KW - Massenspektrometrie KW - Non-target KW - ICP-ToF-MS KW - Laser Ablation/Imaging PY - 2021 VL - 69 IS - Juni SP - 64 EP - 67 PB - Wiley-VCH AN - OPUS4-52800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, V. A1 - Traub, Heike A1 - Biskup, K. A1 - Wieczorek, M. A1 - Saatz, Jessica A1 - Pagel, K. T1 - Central project for biochemical analysis of proteoglycans and glycosaminoglycans and for element-specific microscopy N2 - Nearly all disease processes are associated with variations of components of the extracellular matrix (ECM) that are typically observed during the development of inflammation. This concerns for example proteoglycans and their associated glycosaminoglycans (GAG), which have been shown to bind to cationic metal imaging probes due to their strong complexing activity. The complexing activity largely depends on the degree of GAG sulfation and/or carboxylation as well as on the GAG isomericity. In this central project, we investigate GAG structures from inflammatory disorders (namely cardiovascular diseases, inflammatory intestinal diseases and neuroinflammation) provided by researchers of the Collaborative Research Center at the molecular disaccharidic level using chromatographic and mass spectrometric methods. In parallel, the spatial localization and quantification of metal-based imaging probes are evaluated by LA-ICP-MS imaging. T2 - 1st International Symposium In vivo Visualization of Extracellular Matrix Pathology CY - Online Meeting DA - 27.05.2021 KW - Laser ablation KW - ICP-MS KW - MALDI PY - 2021 AN - OPUS4-52716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, V. A1 - Uhlemann, M. A1 - Richter, Silke A1 - Pfeifer, jens T1 - Calibration capacity of hot-pressed hydrogen standards for glow discharge optical emission and mass spectrometry N2 - Mixed copper and titanium hydride powder was hot-pressed and characterized by Carrier Gas Hot Extraction, XRay Diffraction, Thermal Gravimetric Analysis coupled with Mass Spectrometry, and Scanning Electron Microscopy. The hot-pressed and five conventional samples were applied for calibration of hydrogen in Glow Discharge Optical Emission and Mass Spectrometry. Up to the introduction of 15 ng/s hydrogen the Emission yield model is useful in Glow Discharge Optical Emission Spectrometry. A correlation between saturation and even reversal of the emission yield of the spectral lines H121, H486 and H656 and low sputtering rates was found. Hydrogen effects exist for the spectral lines of Cu(II) 219 and Ti(I) 399. In Glow Discharge Mass Spectrometry, a linear dependency of the 1H ion current on the sputtered mass per time exists over the total range of hydrogen content investigated. Hydrogen effects also exist for the sensitivity of 48Ti and 63Cu. The sputtering rate of two-phase materials depends linearly on the sputtered mass per time of one phase, which allows the sputtering rate of two-phase materials with known composition to be predicted. KW - Hot-pressing KW - GD-OES KW - GD-MS KW - Calibration KW - Hydrogen KW - Titanium hydride KW - Sputtering KW - Two-phase system PY - 2021 DO - https://doi.org/10.1016/j.sab.2020.106039 VL - 176 SP - 106039 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Méndez, A. A1 - Richter, Silke A1 - Ruiz Encinar, J. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. T1 - Exploring quantitative cellular biomaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS N2 - High spatially resolved quantitative bioimaging of CdSe/ZnS Quantum Dots uptake in two kinds of cells is investigated combining laser ablation inductively coupled plasma mass spectrometry and the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of Quantum Dots. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus. KW - LA-ICP-SFMS KW - Fast single pulse response KW - Quantitative bioimaging KW - Cellular uptake KW - HT22 KW - HeLa KW - Single cell KW - pL-droplets KW - CdSe/ZnS quantum Dots KW - AFM PY - 2021 DO - https://doi.org/10.1016/j.talanta.2021.122162 SN - 0039-9140 VL - 227 SP - 122162 PB - Elsevier B.V. AN - OPUS4-52121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Juliane A1 - Recknagel, Sebastian A1 - Sassenroth, Diana A1 - Mauch, Tatjana A1 - Buttler, Sabine A1 - Sommerfeld, Thomas A1 - Penk, Sibylle A1 - Koch, Matthias T1 - Development and certification of a reference material for zearalenone in maize germ oil N2 - Zearalenone (ZEN), an estrogenic mycotoxin produced by several species of Fusarium fungi, is a common contaminant of cereal-based food worldwide. Due to frequent occurrences associated with high levels of ZEN, maize oil is a particular source of exposure. Although a European maximumlevel for ZEN in maize oil exists according to Commission Regulation (EC) No. 1126/2007 along with a newly developed international standard method for analysis, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of ZEN in contaminated maize germ oil (ERM®-BC715) was developed in the frame of a European Reference Materials (ERM®) project according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fraction was based upon an in-house study using high-performance liquid chromatography isotope dilution tandem mass spectrometry. Simultaneously, to support the in-house certification study, an interlaboratory comparison study was conducted with 13 expert laboratories using different analytical methods. The certified mass fraction and expanded uncertainty (k=2) of ERM®-BC715 (362± 22) μg kg−1 ZEN are traceable to the SI. This reference material is intended for analytical quality control and contributes to the improvement of consumer protection and food safety. KW - Fusarium mycotoxin KW - Vegetable edible oil KW - Food analysis KW - European Reference Material KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531831 DO - https://doi.org/10.1007/s00216-021-03532-z SN - 1618-2642 SN - 1618-2650 VL - 413 IS - 21 SP - 5483 EP - 5491 PB - Springer CY - Berlin AN - OPUS4-53183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - ISO-Guide 35 in der Praxis eines RM-Herstellers N2 - Der ISO-Guide 35 beschreibt die notwendigen Schritte zur Herstellung von zertifizierten Referenzmaterialien. Anhand praktischer Beispiele wird die Umsetzung des Guide 35 in der BAM dokumentiert. T2 - DAkkS-Begutachterschulung Modul E zur Akkreditierung von Eignungsprüfungsanbietern und Referenzmaterialherstellern CY - Online meeting DA - 04.02.2021 KW - ISO-Guide 35 KW - Referenzmaterial-Herstellung KW - ZRM PY - 2021 AN - OPUS4-52099 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation, analysis and certification of a new certified glass reference material (CRM) for the determination of hydrolytic resistance of borosilicate glass with the glass grains test is described. The CRM BAM-S053 is available in the form of glass rods (length: 185 mm, diameter: 9 mm, weight: 27·5 g). Certified properties are the acid consumption determined according to the procedures described in ISO 720, USP<660>, Ph.Eur. 3.2.1, data obtained following the procedure of ISO 719 was scattering too widely. The certified values are based on the results of 15 laboratories which participated in the certification interlaboratory comparison. The CRM is intended for the quality control when applying ISO 720, USP<660>, Ph.Eur. 3.2.1 and with limitations ISO 719. KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2021 DO - https://doi.org/10.13036/17533562.62.1.001 VL - 62 IS - 1 SP - 25 EP - 27 AN - OPUS4-52195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hommel, C. A1 - Hassler, J. A1 - Matschat, Ralf A1 - Vogt, T. A1 - Detcheva, A. K. A1 - Recknagel, Sebastian T1 - A fast and robust direct solid sampling method for the determination of 27 trace, main and minor elements in soda-lime glass based on ETV-ICP OES and using a gaseous halogenating modifier N2 - A method, based on electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP OES), has been optimized for direct solid sampling analysis of soda-lime glass - the most common type of industrially manufactured glass. This method allows fast and reliable quantification of the main elements - Al, Ca, K, Mg, Na, and Si - and trace elements - As, Ba, Cd, Ce, Co, Cr, Cu, Fe, Mn, Mo, Ni, (P), Pb, Sb, (Se), Sn, Sr, Ti, V, Zn, and Zr. In the presented ETV-ICP OES method, calibration is performed predominantly with matrix-free synthetic samples. This metrological advantage is normally not achieved with direct solid sampling methods and is one of the goals of the present study. In a certification interlaboratory comparison for the soda-lime glass CRM BAM-S005c, 2 out of 16 laboratories employed the ETV-ICP OES method. An improved analytical performance was obtained compared with the results of laboratories that used conventional liquid ICP OES. For both methods, the average relative deviations between the laboratory results and certified values as well as the average values of relative standard deviation were with a few exceptions <10%, in most cases even <5%, which indicated high trueness and precision. KW - ICP-OES KW - ETV KW - Soda-lime glass KW - Reference material PY - 2021 DO - https://doi.org/10.1039/d1ja00081k SN - 0267-9477 SN - 1364-5544 VL - 36 IS - 8 SP - 1683 EP - 1693 PB - Royal Society of Chemistry CY - London AN - OPUS4-53181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Recknagel, Sebastian T1 - Certified reference materials for the determination of cadmium (Cd) in cocoa N2 - BAM has produced three cocoa CRMs certified for cadmium (ERM-BD513 – 515) as tools for checking analytical methods for Cd-determination. KW - Certified reference material KW - Cocoa KW - Cadmium PY - 2021 SP - 4 EP - 4 AN - OPUS4-53694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - Lithium isotope analysis combining atomic absorption spectroscopy and machine learning N2 - In this poster for the SCIX Conference, we apply an analytical procedure based on the monitoring of the lithium isotope through the partially resolved isotope shift in the electronic transition 22P<-22S around wavelength 670.80 nm using high-resolution continuum source atomic absorption spectrometer (HR-CS-AAS) in combination with machine learning (ML) for the determination of Li Isotope ratio analysis. T2 - SCIX Conference CY - Providence, RI, USA DA - 26.09.2021 KW - Lithium isotope KW - High-resolution continuum source atomic absorption spectrometer KW - Machine learning PY - 2021 AN - OPUS4-53686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Atomic absorption spectrometry with machine learning as a tool for lithium isotope analysis N2 - The general interest in the implementation of renewable energies, particularly in the development of lithium-ion batteries, makes lithium a key element to be analyzed. We are working to develop this tool to determine if the isotopic effect of lithium has an impact on battery aging. T2 - SALSA Konferenz CY - Berlin, Germany DA - 16.09.2021 KW - Atomic absorption spectrometry KW - Battery KW - Machine learning KW - Lithium KW - Isotope PY - 2021 AN - OPUS4-53693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Richter, Silke A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - High-resolution optical isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Current activities on Department Analytical Chemistry, Reference Materials about optical isotopic spectrometry as a tool for aging studies of Li-ion batteries. T2 - Adlershofer Kolloquium - FB 1.6 CY - Online meeting DA - 18.05.2021 KW - High-resolution KW - Battery aging KW - Storage Technologies KW - Optical isotopic spectrometry KW - Lithium-ion batteries KW - Inorganic Reference Materials KW - Pouch cell KW - Anode KW - Cathode KW - Electrochemistry KW - Isotope PY - 2021 AN - OPUS4-53712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Mimus, S. A1 - Recknagel, Sebastian A1 - Jakubowski, N. A1 - Panne, Ulrich A1 - Becker-Ross, H. A1 - Huang, M.-D. T1 - Determination of organic chlorine in water via AlCl derivatization and detection by high-resolution continuum source graphite furnace molecular absorption spectrometry N2 - High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GF-MAS) was employed for determining adsorbable organic chlorine (AOCl) in water. Organic chlorine was indirectly quantified by monitoring the molecular absorption of the transient aluminum monochloride molecule (AlCl) around a wavelength of 261.42 nm in a graphite furnace. An aluminum solution was used as the molecularforming modifier. A zirconium coated graphite furnace, as well as Sr and Ag solutions were applied as modifiers for a maximal enhancement of the absorption signal. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Non-spectral interferences were observed with F, Br, and I at concentrations higher than 6 mg L-1, 50 mg L-1, and 100 mg L-1, respectively. Calibration curves with NaCl, 4-chlorophenol, and trichlorophenol present the same slope and dynamic range, which indicates the chlorine atom specificity of the method. This method was evaluated and validated using synthetic water samples, following the current standard DIN EN ISO 9562:2004 for the determination of the sum parameter adsorbable organic halides (AOX) for water quality. These samples contain 4-chlorophenol as the chlorinated organic standard in an inorganic chloride matrix. Prior to analysis, organic chlorine was extracted from the inorganic matrix via solid-phase extraction with a recovery rate >95%. There were no statistically significant differences observed between measured and known values and for a t-test a confidence level of 95% was achieved. The limits of detection and characteristic mass were found to be 48 and 22 pg, respectively. The calibration curve was linear in the range 0.1–2.5 ng with a correlation coefficient R2 = 0.9986. KW - Chlorides KW - Chlorine KW - Graphite furnace KW - Spectrometry KW - Diatomic molecule KW - Water KW - AlCl PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534426 DO - https://doi.org/10.1039/D1AY00430A SN - 1759-9660 VL - 13 IS - 33 SP - 3724 EP - 3730 PB - The Royal Society of Chemistry CY - London, UK AN - OPUS4-53442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Morcillo Garcia-Morato, Dalia A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Determination of lithium in human serum by isotope dilution atomic absorption spectrometry N2 - The therapeutic dose of lithium (Li) compounds, which are widely used for the treatment of psychiatric and hematologic disorders, is close to its toxic level; therefore, drug monitoring protocols are mandatory. Herein, we propose a fast, simple, and low-cost analytical procedure for the traceable determination of Li concentration in human serum, based on the monitoring of the Li isotope dilution through the partially resolved isotope shift in its electronic transition around 670.80 nm using a commercially available high-resolution continuum source graphite furnace atomic absorption spectrometer. With this technique, serum samples only require acidic digestion before analysis. The procedure requires three measurements—an enriched 6Li spike, a mixture of a certified standard solution and spike, and a mixture of the sample and spike with a nominal 7Li/6Li ratio of 0.82. Lanthanum has been used as an internal spectral standard for wavelength correction. The spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Both the spectral constants and the correlation between isotope ratio and relative band intensity have been experimentally obtained using commercially available materials enriched with Li isotopes. The Li characteristic mass (mc) obtained corresponds to 0.6 pg. The procedure has been validated using five human serum certified reference materials. The results are metrologically comparable and compatible to the certified values. The measurement uncertainties are comparable to those obtained by the more complex and expensive technique, isotope dilution mass spectrometry. KW - Lithium KW - Human serum KW - Isotope dilution KW - Atomic absorption spectrometry KW - High-resolution continuum source graphite furnace atomic absorption spectrometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532446 DO - https://doi.org/10.1007/s00216-021-03636-6 VL - 414 IS - 1 SP - 251 EP - 256 PB - Springer CY - Berlin AN - OPUS4-53244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Nowak, S. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-Resolution Atomic Absorption Spectrometry Combined With Machine Learning Data Processing for Isotope Amount Ratio Analysis of Lithium N2 - An alternative method for lithium isotope amount ratio analysis based on a combination of high-resolution atomic absorption spectrometry and spectral data analysis by machine learning (ML) is proposed herein. It is based on the well-known isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by the state-of-the-art high-resolution continuum source graphite furnace atomic absorption spectrometry. For isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions, ranging from 0.06 to 0.99 mol mol–1, previously determined by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The calibration ML model was validated with two certified reference materials (LSVEC and IRMM-016). The procedure was applied toward the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. The results of these determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9 to 6.2‰. This precision was sufficient to resolve naturally occurring variations, as demonstrated for samples ranging from approximately −3 to +15‰. To assess its suitability to technical applications, the NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification. The results obtained were metrologically compatible with each other. KW - Lithium KW - Isotope KW - Machine learning KW - Algorithms KW - Reference material KW - AAS KW - Atomic Absorption Spectrometry PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c00206 SN - 1520-6882 VL - 93 IS - 29 SP - 10022 EP - 10030 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-53028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Tanz der Moleküle: Herkunftsbestimmung mittels optischer Spektroskopie N2 - Wie lässt sich die Herkunft von Rohstoffen, Lebensmitteln oder Umweltschadstoffen einfacher, schneller und kostengünstiger als mit bisherigen Methoden bestimmen? Die Dissertation zeigt auf, dass man das grundlegende physikalische Prinzip einer Isotopverschiebung mit in Adlershof entwickelten Optik-Instrumenten für die Herkunftsbestimmung nutzen kann. Die entwickelte Methode ermöglicht es in Zukunft den Ursprung von Rohstoffen, Lebensmitteln oder Umweltschadstoffen kostengünstiger und wesentlich schneller bestimmen, als dies mit bisherigen Methoden möglich ist. Kann man das grundlegende physikalische Prinzip einer Isotopieverschiebung mit einem Optik-Instrument für die Herkunftsbestimmung nutzen? Carlos Abad hat eine wegweisende Methode entwickelt, die es in Zukunft ermöglicht den Ursprung von Rohstoffen, Lebensmitteln oder Umweltschadstoffen kostengünstiger und wesentlich schneller bestimmen, als dies mit bisherigen Techniken möglich ist. T2 - Dissertationspreis Adlershof 2019 CY - Berlin, Germany DA - 12.02.2020 KW - Herkunftsbestimmung KW - Isotopenanalyse KW - Isotope KW - Optischer Spektroskopie KW - Coltan PY - 2020 AN - OPUS4-51993 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Koch, Matthias A1 - Köppen, Robert A1 - Buttler, Sabine A1 - Penk, Sibylle A1 - Mauch, Tatjana A1 - Sommerfeld, Thomas A1 - Witt, Angelika T1 - Development of certified reference materials for the determination of cadmium and acrylamide in cocoa N2 - Since 1 January 2019 a maximum content of 0.6 mg kg−1 cadmium (Cd) in cocoa powder sold to the final consumer or as an ingredient in sweetened cocoa powder sold to the final consumer (drinking chocolate) is set by the Commission Regulation (EU) No. 488/2014. Monitoring compliance with the specified limit value requires analytical measuring methods and reference materials for quality control. However, suitable certified reference materials intended for quality assurance and quality control purposes are still lacking. Therefore, three cocoa reference materials (ERM®-BD513, ERM®-514 and ERM®-515) were developed according to the requirements of ISO 17034 and the recommendations of ISO Guide 35. The whole process of reference material development, including material preparation, assessment of homogeneity and stability, characterisation and value assignment is presented. The assignment of the certified mass fractions was based upon an interlaboratory comparison study involving 19 expert laboratories for Cd and 12 laboratories for acrylamide. The certified mass fractions and expanded uncertainties (k = 2) of the reference materials were (0.181 ± 0.009) mg kg−1 Cd (ERM®-BD513), (0.541 ± 0.024) mg kg−1 Cd (ERM®-BD514) and (0.690 ± 0.029) mg kg−1 Cd (ERM®-BD515). Acrylamide contents are given for information. KW - Certified reference material KW - Quality assurance KW - Cocoa KW - Cadmium KW - Acrylamide KW - Food analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508656 DO - https://doi.org/10.1007/s00216-020-02719-0 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 19 SP - 4659 EP - 4668 PB - Springer CY - Berlin AN - OPUS4-50865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Advances and Applications of Molecular Absorption Spectrometry: from Non-Metals to Isotope Analysis N2 - Wie kann Nicht-Messbares messbar gemacht werden? Die Antwort der Dissertation auf diese zentrale Frage der analytischen Chemie lautet: die Anwendung der hochauflösenden optischen Spektroskopie der diatomischen Moleküle. In der Arbeit wird in einem ersten Schritt in Grafitöfen, die wie Chemiereaktoren funktionieren, und durch die Anwendung verschiedener analytischer Methoden die diatomische Molekülbildung nachvollzogen. In einem zweiten Schritt werden die aufgedeckten Mechanismen auf die Bestimmung von Nichtmetallen und die Analyse von Isotopen angewendet. Die Isotopenanalytik ist das zukunftsweisendes Herzstück der Dissertation und von alltäglicher und politischer Relevanz: Mittels dieser Technik lässt sich die Herkunft von Lebensmitteln aber auch Chemiewaffen kostengünstiger und wesentlich schneller bestimmen als mit bisherigen Methoden der Massenspektrometrie. Möglich ist die Bestimmung, da alles um uns herum aus Atomen verschiedener Elemente besteht und die meisten Elemente mehrere Isotope haben. Isotope unterscheiden sich hinsichtlich ihres Gewichts, da sie über eine unterschiedliche Anzahl an Neutronen verfügen. Die Informationen über das Verhältnis von schweren und leichten Isotopen lässt sich nutzen, um zu bestimmen wo etwas entstanden ist. Jeder Ort auf unserem Planeten hat seinen persönlichen Element- und Isotopenanteil (Isotopenfingerabdruck). Das in der Arbeit angewandte Instrument misst das Verhältnis indirekt und nutzt hierzu die Interaktion zwischen Licht und Materie. Für das schwerere Isotop wird mehr Licht/Energie benötigt, um es in Bewegung zu bringen, als für das leichtere. Diese kleinen Unterschiede an Energie, die wir dafür aufwenden müssen, werden gemessen und ermöglichen die Herkunftsbestimmung. Damit leistet die Arbeit nicht nur einen wichtigen Beitrag zur Grundlagenforschung in der analytischen Chemie, sondern kann mit den aufgezeigten Ergebnissen auch Anwendung in den Bereichen Verbraucherschutz, Umweltforschung und Waffenkontrolle finden. N2 - The present work covers two main aspects of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS), an analytical technique for elemental trace analysis. First, a comprehensive mechanistic study of molecule formation in graphite furnaces is presented, which is a key step into the recovery of analytical signals. For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in HR-CS-GFMAS. A zirconium coating catalyzes the CaF formation, and its structure was investigated. The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. Here a mechanism is proposed, where ZrO2 works as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, analytical methods were developed by using HR-CS-MAS as detector for non-metals and isotope analysis. Therefore, the determination of organic absorbable chlorine in water, the quantification of fluorine in consume care products with declared perfluorinated ingredients, and the determination of sulfur content in crude oils were investigated. Finally, the high resolution of the instrumentation allows to measure isotopic shifts with high precision in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of boron and magnesium were investigated, establishing so the potential of HR-CS-MAS for the accurate and precise determination of isotopic amount ratios. T2 - Applied Photonics Award 2020 CY - Jena, Germany DA - 22.09.2020 KW - Herkunftsbestimmung KW - Isotopenanalyse KW - Isotope KW - Optischer Spektroskopie PY - 2020 AN - OPUS4-51996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, N. A1 - Borrmann, S. A1 - Recknagel, Sebastian A1 - Roik, Janina A1 - Rickert, F. T1 - Comparison of peristaltic pumps used for sample introduction in Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) N2 - In this investigation, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle using a simultaneous ICP-AES instrument with standard operating conditions. It is found that the figures of merit achieved are quite comparable for all three pumps. Relative standard deviations (RSDs) range between 0.2% and 1.8%, and limits of detection as low as 0.1 μg/L have been achieved , demonstrating that the easy click principle of the new pump does not compromise the analytical figures of merit. KW - ICP-AES KW - Peristaltic pumps KW - ICP-MS PY - 2020 IS - 35 / S4 SP - 6 AN - OPUS4-52020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotope analysis by high-resolution optical spectroscopy: a tool for planetary science N2 - Isotope analysis can be used to determine the age and provenance of geological samples. Modern techniques in optical spectrometry allow us a stand-off isotope analysis. This seminar will discuss how planetary science with the next Moon and Mars missions drive optical spectrometry into precise and accurate isotope analysis and how BAM will contribute. T2 - Adlershofer Kolloquium CY - Online meeting DA - 19.05.2020 KW - Provenance KW - Dating KW - Isotopes KW - Optical spectroscopy KW - Isotopic shift KW - Planetary science PY - 2020 AN - OPUS4-51995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Abad Andrade, Carlos Enrique T1 - High-resolution optical spectrometry for lithium isotope ratio analysis N2 - An alternative method for lithium isotope amount ratio analysis is proposed by combining atomic absorption spectrometry with spectra data analysis by machine leaning. It is based on the well-known isotope shift of around 15 pm for the electronic transition at wavelength 670.7845 nm which can be measured by a high-resolution continuum source atomic absorption spectrometer (HR-CS-AAS). For isotope amount ratio analysis, a scalable three boosting machine learning algorithm (XGBoost) was employed and calibrated with a set of samples with a 6Li isotope amount fraction ranging from 99% to 6%. The absolute Li isotope amount fractions of these calibration samples were previously measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) and used as ab-initio data for the machine learning algorithm. Validation of the machine leaning model was performed with two standard reference materials (LSVEC and IRMM-016). The procedure was employed for the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, LiOH, and LiF) as well as a BAM candidate LiMNC cathode reference material. Achieved uncertainties are one order of magnitude higher than those obtained by MC-ICP-MS. This precision and accuracy is nonetheless sufficient to resolve natural occurring variations in Lithium isotope ratios. Also, the LiMNC material was analyzed by HR-CS-AAS with and without matrix purification. The results are comparable within statistical error. T2 - Groupseminar - GFZ Potsdam CY - Online Meeting DA - 27.10.2020 KW - Lithium batteries KW - HR-CS-AAS KW - Machine learning KW - Isotope analysis PY - 2020 AN - OPUS4-51572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -