TY - JOUR A1 - Garcia-Fernandez, J. A1 - Turiel, D. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Rivas Garcia, L. A1 - Llopis, J. A1 - Sanchez-Gonzalez, C. A1 - Montes-Bayon, M. T1 - In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements JF - Nanotoxicology N2 - Well-absorbed iron-based nanoparticulated materials are a promise for the oral management of iron deficient anemia. In this work, a battery of in vitro and in situ experiments are combined for the evaluation of the uptake, distribution and toxicity of new synthesized ultrasmall (4 nm core) Fe2O3 nanoparticles coated with tartaric/adipic acid with potential to be used as oral Fe supplements. First, the in vitro simulated gastric acid solubility studies by TEM and HPLC-ICP-MS reveal a partial reduction of the core size of about 40% after 90 min at pH3. Such scenario confirms the arrival of the nanoparticulate material in the small intestine. In the next step, the in vivo absorption through the small intestine by intestinal perfusion experiments is conducted using the sought nanoparticles in Wistar rats. The quantification of Fe in the NPs Suspension before and after perfusion shows Fe absorption levels above 79%, never reported for other Fe treatments. Such high absorption levels do not seem to compromise cell viability, evaluated in enterocytes-like models (Caco-2 and HT-29) using cytotoxicity, ROS production, genotoxicity and lipid peroxidation tests. Moreover, regional differences in terms of Fe concentration are obtained among different parts of the small intestine as duodenum>jejunum>ileum. Complementary transmission electron microscopy (TEM) images show the presence of the intact particles around the intestinal microvilli without significant tissue damage. These studies show the high potential of these NP preparations for their use as oral management of anemia. KW - Iron nanoparticles KW - Anemia KW - ICP-MS KW - In vitro KW - In situ PY - 2020 DO - https://doi.org/10.1080/17435390.2019.1710613 VL - 14 IS - 3 SP - 388 EP - 403 PB - Taylor & Francis Online CY - London AN - OPUS4-50314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Borovinskaya, O. A1 - Tourniaire, G. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Arraying of single cells for quantitative high throughput laser ablation ICP-TOF-MS JF - Analytical Chemistry N2 - Arraying of single cells for mass spectrometric analysis is a considerable bioanalytical challenge. In this study, we employ a novel single cell arraying technology for quantitative analysis and isotopic fingerprinting by laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). The single cell arraying approach is based on a piezo-acoustic microarrayer with software for automated optical detection of cells within the piezo dispense capillary (PDC) prior to arraying. Using optimized parameters, single cell occupancy of >99%, high throughput (up to 550 cells per hour), and a high cell recovery of >66% is achieved. LA-ICP-TOF-MS is employed to detect naturally occurring isotopes in the whole mass range as fingerprints of individual cells. Moreover, precise quantitative determination of metal-containing cell dyes is possible down to contents of ∼100 ag using calibration standards which were produced using the same arrayer. KW - Laser ablation KW - Cell KW - Array KW - ICP-MS PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00198 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11520 EP - 11528 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -