TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS JF - Rapid Commun Mass Spectrom N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na+ K+; NaNH4 +; KNH4 +). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. KW - Mass Spectrometry KW - Electrochemistry KW - ECR KW - Lasalocid KW - Ionophore KW - Transformation products PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553919 DO - https://doi.org/10.1002/rcm.9349 VL - 36 IS - 18 SP - 1 EP - 10 PB - Wiley online library AN - OPUS4-55391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, J. A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine in Amperometric Assays JF - ChemElectroChem N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for Monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3’,5,5’-tetramethylbenzidine (TMB),form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detectionstep, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphonebased, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis forsensing of further analytes. KW - Ochratoxin A KW - Amperometry KW - Cyclic voltammetry KW - Electrochemistry KW - Immunoassay PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530421 DO - https://doi.org/10.1002/celc.202100446 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 8 IS - 13 SP - 2597 EP - 2606 AN - OPUS4-53042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotthoff, Lisa A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Electrochemistry coupled to LC/HRMS to investigate transformation products of the veterinary drug monensin N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for health, food and environmental matters. Monensin (MON) is an ionophore antibiotic widely used to cure and prevent coccidiosis by chicken especially in broiler farming. Residues can be found in food products (chicken and eggs) and in the environment (manure, soil, water). Several transformation processes can alter the parent compound MON, ranging from biotransformation in living organism to biotic/abiotic and microbial processes in environmental matters. The main objective of this work was to investigate the potential of electrochemistry (EC) to simulate oxidative transformation processes of MON and to predict TPs. An electrochemical reactor was used consisting of a flow-through cell with a glassy carbon working electrode. Derived TPs were analyzed by online coupling of EC and high-resolution mass spectrometry (HRMS) and LC/HRMS offline measurements. Among the generated TPs already known as well as unknown TPs of MON could be found. Additionally, MON was subjected also to other transformation experiments like metabolism tests with rat microsomes or the pH-dependent hydrolysis. As a result, different targeted and suspected TPs could be identified by analysis with LC/HRMS. An overview of detected/identified TPs from this study will be presented in comparison to literature known metabolites and TPs. T2 - ElCheMS 2019 – 5th Workshop on Electrochemistry/Mass Spectrometry 2019 CY - Münster, Germany DA - 11.06.2019 KW - Transformation product KW - Electrochemistry KW - High-resolution MS KW - Ionophore antibiotic PY - 2019 AN - OPUS4-48209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Richter, Silke A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - High-resolution optical isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Current activities on Department Analytical Chemistry, Reference Materials about optical isotopic spectrometry as a tool for aging studies of Li-ion batteries. T2 - Adlershofer Kolloquium - FB 1.6 CY - Online meeting DA - 18.05.2021 KW - High-resolution KW - Battery aging KW - Storage Technologies KW - Optical isotopic spectrometry KW - Lithium-ion batteries KW - Inorganic Reference Materials KW - Pouch cell KW - Anode KW - Cathode KW - Electrochemistry KW - Isotope PY - 2021 AN - OPUS4-53712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya T1 - Immunomagnetic ochratoxin a assay with electrochemical 3,3′,5,5′ tetramethylbenzidine detection N2 - The demand for miniaturized analytical devices monitoring important parameters in the food and medical industry has increased strongly in the past decades. With fast progress, smart technologies are finding their way into our everyday life. For the future, it is, therefore, a major goal to also link analytical methods with smart technologies to create user-friendly on-site devices. In food industry the monitoring of harmful substances such as dioxins, heavy metals or mycotoxins plays a key role, since the European Commission prescribes legal limits for various food products and beverages[1]. Therefore, companies often have their own laboratories and trained personnel. For one of the most abundant and toxic mycotoxins, Ochratoxin A (OTA) we want to present an electrochemical detection system in which the read-out can be performed with a smartphone connected via Bluetooth to a miniaturized potentiostat. The recognition of OTA is performed with specific antibodies in a competitive assay format. Anti-OTA-antibodies were captured on magnetic beads on which the competitive binding between OTA and an OTA horseradish peroxidase (HRP) tracer was performed. To quantify OTA, the enzymatic reaction of the tracer with 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2 is employed. Oxidized TMB, which is enzymatically produced by the reduction of H2O2, is quantified by amperometry with screen-printed electrodes in a custom-made flow system. The results of the electrochemical detection method are in good correlation with the photometric detection of TMB. To demonstrate the applicability, we tested our system with OTA-spiked beer and performed the measurement via smartphone. T2 - 23rd JCF-Frühjahrssymposium 2021 CY - Online meeting DA - 29.03.2021 KW - Ochratoxin A KW - Cyclic voltammetry KW - Amperometry KW - Electrochemistry PY - 2021 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-52390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotthoff, Lisa A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Investigation of ionophore antibiotics and their transformation products by using electrochemistry coupled to LC-MS N2 - Ionophore antibiotics are used to cure and prevent coccidiosis by chicken especially in broiler farming. The residues are found not only in food products (chicken and eggs) but also in the environment (manure, soil or water). In this work the ionophores monensin (MON), salinomycin (SAL), maduramicin (MAD) and lasalocid (LAS) are investigated aiming to study their transformation products (TPs) through biotransformation processes. Biotransformation can be divided into two phases, phase I: oxidation, reduction or hydrolysis and Phase II: conjugation reactions. It is necessary to further examine the biotransformation pathways to determine TPs to be able to detect residues more specifically in different matrices. The technique of electrochemistry (EC) offers the opportunity to simulate biotransformation processes and to generate TPs for further analysis. The combination of EC with liquid chromatography and mass spectrometry (EC-LC-MS) provide a fast and simple tool to separate and determine the EC-generated TPs. The electrochemical flow through cell is coupled to the (LC)-MS system, allowing the reaction mixture to be separated by a RP-18 column and then analyzed in the MS. The oxidation products are generated at different potentials between 0.0 – 2.5 V vs. Pd/H2 using glassy carbon or boron doped diamond as working electrode materials . The results show a broad spectrum of different TPs depending on used solvents and working electrode materials. Among the generated TPs already known as well as unknown TPs of the drugs can be found. Further investigations on structure elucidation of unkown TPs are planned. T2 - World Conference on Analytical and Bioanalytical Chemistry CY - Barcelona, Spain DA - 23.07.2018 KW - Transformation Product KW - Electrochemistry KW - Ionophore Antibiotics PY - 2018 AN - OPUS4-45600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotthoff, Lisa A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Investigation of the veterinary drug monensin: Simulation and identification of transformation products N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for health, food and environmental matters. Monensin (MON) is an ionophore antibiotic widely used to cure and prevent coccidiosis by chicken especially in broiler farming. Residues are not only found in food products (chicken and eggs) but also in the environment (manure, soil or water). Several transformation processes can alter the parent compound MON, ranging from biotransformation in living organism to biotic/abiotic and microbial processes in environmental matters. The main objective of this work was to investigate the potential of electrochemistry (EC) to simulate oxidative transformation processes and to predict TPs of MON. An electrochemical reactor was used consisting of a flow-through cell with a glassy carbon working electrode. Derived TPs were analyzed by online coupling of EC and high-resolution mass spectrometry (HRMS) and LC-HRMS offline measurements. Among the generated TPs already known as well as unknown TPs of MON could be found. Additionally, MON was subjected also to other transformation methods such as Fenton reaction, photochemical and hydrolysis experiments as well as metabolism tests with microsomes. As a result, different targeted and suspected TPs could be identified by analysis with LC-HRMS. An overview of detected/identified TPs from this study will be presented in comparison to literature known metabolites and TPs. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Transformation Products KW - Electrochemistry KW - High-resolution MS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476813 AN - OPUS4-47681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome JF - antibiotics N2 - The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary Medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction. KW - Salinomycin KW - Ionophore antibiotics KW - Transformation product KW - Electrochemistry KW - Rat/human liver microsomes KW - HRMS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542543 DO - https://doi.org/10.3390/antibiotics11020155 SN - 2079-6382 VL - 11 IS - 2 SP - 155 PB - MDPI CY - Basel AN - OPUS4-54254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis JF - Molecules N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485689 DO - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Temgoua Tonleu, Ranil C. A1 - Koch, Matthias T1 - Simulation of the Environmental Degradation of TBBPA by EC-LC-MS N2 - Oxidative degradation processes of tetrabromobisphenol A (TBBPA), a brominated flame retardant (BFR) in wood, plastics and electronics, were investigated by electrochemistry (EC) coupled online to electrospray ionization mass spectrometry (ESI/MS). Oxidative phase I and II metabolites production was achieved using an electrochemical flow-through cell equipped with a boron doped diamond electrode. Structural elucidation and prediction of oxidative metabolism pathways of TBBPA according to type II ipso-substitution were based on retention time, m/z ratio in negative mode and fragmentation pattern. Using the data obtained through high resolution MS analysis and the identification of single electron transfer (SET) as the initial step of a two-electron oxidation provided the necessary information to propose a mechanism for the electrochemical oxidation of TBBPA. Oxidation reactions involving aromatic hydroxylation and β-scission were the main degradation observed when studying the electrochemical behavior of TBBPA. Computational chemistry experiments using density functional theory (DFT) allowed to identify mono-hydroxylated reaction intermediate and dismissed the mechanism involving two concurrent hydroxylation. TBBPA oxidation products were compared to known metabolites of its biological and environmental degradation confirming the ability of electrochemistry to simulate β-scission reactions. T2 - Mass Spectrometry Forum 2024 CY - Vienna, Austria DA - 21.02.2024 KW - Emerging pollutants KW - Chemical characterization KW - Electrochemistry KW - Chemical and material safety KW - Mass spectrometry KW - Environment-material interactions PY - 2024 AN - OPUS4-59571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Mekonnen, Tessema F. A1 - Koch, Matthias T1 - Transformation products of organic contaminants and residues - Overview of current simulation methods JF - Molecules N2 - The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods. KW - Transformation product KW - Electrochemistry KW - Photochemistry KW - Fenton’s reagent PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474108 DO - https://doi.org/10.3390/molecules24040753 SN - 1420-3049 VL - 24 IS - 4 SP - 753, 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-47410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -