TY - JOUR A1 - Laux, P. A1 - Tentschert, J. A1 - Riebeling, Ch. A1 - Braeuning, A. A1 - Creutzenberg, O. A1 - Epp, A. A1 - Fessard, V. A1 - Haas, K.-H. A1 - Haase, A. A1 - Hund-Rinke, K. A1 - Jakubowski, Norbert A1 - Kearns, P. A1 - Lampen, A. A1 - Rauscher, H. A1 - Schoonjans, R. A1 - Störmer, A. A1 - Thielmann, A. A1 - Mühle, U. A1 - Luch, A. T1 - Nanomaterials: certain aspects of application, risk assessment and risk communication JF - Archives of Toxicology N2 - Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public. KW - Nanomaterials KW - Toxicity KW - Ecotoxicity KW - Standardization KW - Exposure PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441096 DO - https://doi.org/10.1007/s00204-017-2144-1 VL - 92 IS - 1 SP - 121 EP - 141 PB - Springer AN - OPUS4-44109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production JF - Analytical and bioanalytical chemistry N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548407 DO - https://doi.org/10.1007/s00216-022-03996-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, Daniel A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, Ph. A1 - Tentschert, J. A1 - Jakubowski, Norbert A1 - Laux, P. A1 - Panne, Ulrich T1 - Improved validation for single particle ICP-MS analysis using a pneumatic nebulizer / microdroplet generator sample introduction system for multi-mode nanoparticle determination JF - Analytica Chimica Acta N2 - This study reports on the development of a single-particle (sp) inductively coupled plasma mass spectrometry (ICP-MS) technique suitable for the multi-mode determination of nanoparticle (NP) metal mass fraction and number concentration. The described technique, which is based on a dual inlet System consisting of a pneumatic nebulizer (PN) and a microdroplet generator (MDG), allows for the sequential introduction of ionic metal calibrant solutions and nanoparticle suspensions via all combinations of the two inlets; thus allowing for a combination of three independent modes of analysis. A novel interface, assembled using standard analytical components (a demountable quartz ICP-MS torch, flexible nonconducting silicon tubing and various connectors), was used to interface the dual inlet system to an ICP-MS. The interface provided improved functionality, compared to a previous design. It is now possible to conveniently exchange and introduce standard solutions and samples via all inlet combinations, analyze them, and also wash the sample inlet systems while the whole setup is still connected to an operating ICP-MS. This setup provided seamless and robust operation in a total of three analysis modes, i.e. three ways to independently determine the metal mass fraction and NP number concentration. All three analyses modes could be carried out within a single analytical run lasting approximately 20 min. The unique feature of the described approach is that each analysis mode is based on a different. KW - Nanomaterials KW - Nanoparticles KW - Single particle ICP-MS KW - Microdroplet generator PY - 2020 DO - https://doi.org/10.1016/j.aca.2019.11.043 VL - 1099 SP - 16 EP - 25 PB - Elsevier B.V. AN - OPUS4-50361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -