TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Wegmann, Marc A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. T1 - Automated determination of genotoxicity of nanoparticles with DNA-based optical assays - The NANOGENOTOX project N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials. Aiming at the development of fast and easy to use, automated microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the detection of DNA double strand breaks as a sign for genotoxicity3. Here, we provide first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability and different cell lines like Hep-2 and 8E11 cells, which reveal a dependence of the genotoxicity on the chemical composition as well as the surface chemistry of these nanomaterials. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. T2 - SPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Nanoparticle KW - Fluorescence KW - Surface chemistry KW - Size KW - Assay KW - Microscopy KW - Nanotoxicity KW - Toxicity KW - Automation KW - Calibration KW - Standard PY - 2018 AN - OPUS4-44186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makowski, Maike A1 - Jung, Christian A1 - Werneburg, Martina A1 - Haase, H. A1 - Koch, Matthias T1 - Non-invasive Cereal Analysis by GC-MS detection of Trichodiene as a Volatile Mycotoxin Biomarker N2 - Due to the increasing consumption of cereals worldwide, the monitoring of growth, storage and processing is becoming more and more crucial. Particularly when stored, infested grains breed fungal clusters (“hot spots”) in which mycotoxins greatly exceed allowed maximum levels. Because of their unpredictable presence, current sample drawing and procedures for mycotoxin analysis represent a complex challenge for operators, involving invasive and cost intensive steps. Therefore, new time- and labour-saving mycotoxin control methods including sampling and analysis steps are needed. A possible approach is the non-invasive analysis of the homogeneous gas phase above the crops, instead of analyzing random samples. However, this procedure requires microbial volatile organic compounds (MVOC´s) being released by the samples and representing the present mycotoxins. Previous investigations revealed trichodiene to be a precursor in trichothecenes biosynthesis – one of the largest mycotoxin groups with over 180 compounds. Due to its non-functionalized sesquiterpene structure, trichodiene has already been quantified using Headspace GC-MS methods (for instance). Thereby, it can possibly be used as a biomarker for trichothecene contamination in foodstuff. However, further investigations are necessary. The correlation between trichodiene concentration in the gas phase and trichothecenes mass fraction in the sample must be examined closely to draw conclusions about the exact trichothecene content within samples. Realizing this idea, would widely extend the applicability of trichodiene and enormously simplify trichothecene quantification. Hence, this first step of an ongoing study aims to develop a laboratory reference method using trichodiene as volatile biomarker to quantify trichothecenes in cereals. Static headspace and SPME-enrichment coupled to gas chromatography with mass spectrometry (GC-MS) were employed. In a second step, this reference method is intended to validate new approaches for fast on-site screening of trichodiene in cereals. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 11.03.2018 KW - Trichodiene KW - GC-MS KW - Mycotoxin Biomarker PY - 2018 AN - OPUS4-44509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nutsch, A. A1 - Dill, S. A1 - Kamleitner, I. A1 - Sehorz, A. A1 - Schwarzenberger, M. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Merz, H. A1 - Recknagel, Sebastian T1 - A Methodology to Obtain Traceability and Validation of Calibration Samples for Thin Metal Alloy Layers for X-Ray Fluorescence Tools N2 - Statistic process control as well as process capability demand for calibrated determination of layer thicknesses in various industries, e.g. automotive, aerospace, microelectronics manufacturing. Calibration requires well know and well characterized samples. A calibration laboratory accredited according to DIN EN ISO 17025 has the objective to distribute standards traceable to SI units to industrial laboratories for quality control of manufacturing of various products. Especially, the thickness determination of thin metallic coatings e.g. from galvanic processes or layer deposition using X-Ray Fluorescence can be significantly improved by customized calibration samples. This is essential as the measurement uncertainty directly correlates to the capability performing reliable control of processes with high yield. For calibration laboratories, the validation of results using round robins and the direct comparison to national metrology institutes is a prerequisite to demonstrate the competence to perform calibration services. In this paper a strategy to obtain traceability and validation for thin alloy layers as well as first results are presented. The combined use of the accredited method for determination of mass per area from measurement of mass and area combined with standard free X-Ray Fluorescence as well as chemical analysis of dissolved samples with thin layers is deployed for material systems as NixZn1-x as well as NixP1-x. The obtained results are compared to reference free X-Ray Fluorescence at the BESSY II laboratories of Physikalisch-Technische Bundesanstalt. An excellent agreement of the obtained measured values as mass per unit area and alloy concentrations from the different applied methods within the measurement uncertainty was observed for NixP1-x showing the successful performed traceability of the calibration samples to SI units in combination with a validation of results by national metrology institutes and the round robin approach. T2 - European Conference on X-Ray Spectrometry CY - Ljubljana, Slowenia DA - 24.06.2018 KW - Traceability KW - Thin metal alloy layers KW - X-ray fluorescence PY - 2018 AN - OPUS4-45317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by LA ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of NPs in cell samples. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. Additionally, the local distribution of naturally occurring elements in cells like P was measured to indicate cell morphology. The cells were incubated with different types of NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Our findings show, that LA-ICP-MS is suitable for the localisation of nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation dependent on experimental parameters. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Imaging KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage Lecture N2 - After finishing my diploma thesis in plasma physics in 1981, I dreamt of a future in a research lab to develop novel fusion reactors for energy production or to study universal plasmas and their emission in the cosmos. This dream never became real, however I found my first job in a team to build up a new museum dedicated to “Energy”, and this first part of my career was already finished after a year, because the funding was not extended. So, I found immediately a new job as a young scientist in the institute for analytical sciences (originally ISAS: Institute for Plasmachemistry and Applied Spectroscopy) in 1982 to develop novel plasma ion sources for inorganic mass spectrometry. The first source of interest was based on a glow discharge for direct analysis of conducting solids (technically supported by Finnigan MAT, Bremen). Here I adopted the design of the Grimm type discharge for the first time, which was well known in optical emission spectroscopy, and coupled it to a quadrupole mass analyzer. The advantage of this design was that flat craters are produced by sputtering which made this source very powerful for in-depth analysis of technical layers. This then became the topic of my PhD, which was not originally planned, and I had to learn a lot about surface analysis. However, since the first project was too successful we established a small team (in cooperation with Jose Broekaert - an expert in ICP-OES) which started with the development of our own inductively coupled plasma ion source in 1986 coupled to a quadrupole and in 1989 to a sector field mass spectrometer (funded by the Minister of Science and Technology; again in cooperation with Finnigan MAT). The latter device was launched to the market in 1993 as the Element 1. The second decade of my career was still related to instrumental development but mainly of glow discharge sources. In an EU funded project first an automated glow discharge sector field instrument was developed where the Grimm type geometry was combined with a fast flow concept (in cooperation with Volker Hoffmann at IFW in Dresden). This was done in cooperation with VG (which became later a part of Thermo Fisher Scientific together with Finnigan MAT), so that it is not surprising that this concept for the Element GD. This project was later continued in the third phase of my career, again funded by the EU and in cooperation with the group of Alfredo Sanz-Medel (Rosario Pereiro and Jorge Pisonero), to develop a fast flow, but now rf-powered GD ion source in combination with a time-of-flight mass spectrometer, which was later launched to the market commercially by Horiba Jobin Yvon (France) for in-depth profiling of thin layers even of non-conducting materials. In the first decade of my career I started to study already “analytical chemistry” from the scratch because the instruments developed have been applied now for direct analysis of solid materials, technical layers and environmental samples. In case of environmental applications our ICP-MS (the quadrupole and the sector field instrument) was coupled with separation techniques, so that this period of instrumental development was dominated in the second decade by development of high efficiency sample introduction systems in combination with speciation studies of Pt group elements, arsenic, selenium and phosphorus (in DNA and phosphorylated proteins), Ni and Cr. Additionally, we continued with the analysis of solid ceramic materials (Al2O3, SiC, SiN) and ambient air-born particles. At the end of the second decade we complemented our instrumental pool by a collision and reaction cell instrument in cooperation with Micromass and used this instrument for speciation studies of peptides and proteins and demonstrated that by ICP-HEX-MS quantitative proteomics is feasible. Therefore, we more and more focused in the following years on metalloproteins and published a famous paper on “Metallobiomolecules: The basis of life, the challenge of atomic spectroscopy” (together with Luc Moens and Ryszard Lobinski). For detection of metalloproteins we applied typical workflows of biochemistry and proteomics, for which I had to extend my knowledge about biochemistry and proteomics. As a new analytical tool, we used a homemade laser ablation cell for sample introduction of metalloproteins after their separation by gel electrophoresis and extended this work by applying metal-tagging of antibodies for Western blot assays. For this purpose, proteins were separated in SDS-PAGE and electroblotted onto membranes. Specific detection of proteins even not containing any metal could be performed by laser ablation ICP-MS using the metal tagged antibodies for indirect detection. This research was interrupted in 2009 by a movement from ISAS (where atomic spectroscopy was declining) to BAM (the Federal Institute for Materials Research and Testing, Berlin) where this research direction was fostered. The experience we achieved at ISAS in the previously mentioned projects were now used here at BAM in the fourth decade for materials research and the development of a quantitative elemental microscope with cellular resolution. So, at the end of my career I am trying to apply all my knowledge and expertise to develop analytical methods and to apply multimodal spectroscopies to decipher the construction code of the cellular machinery, which is the most precise and complex machinery I have ever seen. If we were able to understand how this machinery works, we can better diagnose and treat a malfunction in case of the development of a disease. Finally, I can conclude that lifelong learning starts before school but does not end at the end of this lecture. It looks like this heritage lecture will be focused on my career only, but this is not the case because some highlights of my career will be used to illustrate a few universal principles: how to have fun, how to find friends and how this all leads to an increase of joy and joy is the basis of new ideas (which must not always be related to your profession) and novel ideas are essential for a successful and satisfying career. So, this heritage lecture wants to answer the most important question of a life which was dedicated to plasma spectrochemistry: 1) Is it possible - at all - to have fun in this research direction? 2) Can we learn already today what we need tomorrow? 3) How can we still realize our scientific dreams of cutting edge research in times of cutting budgets? Which automatically leads to the next question: 4) Is necessity the mother of invention? All questions will be answered! Controversial discussions (for angry or disappointed colleagues) will be stimulated and my visions of future research (for students and postdocs) and instrumental developments (for manufacturer) will be presented. Finally, conclusions will be drawn by the auditorium (everybody) and thanks will be given to Ramon Barnes (by me) already in advance! T2 - 2018 Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - History of the research work of Norbert Jakubowski KW - Glow Discharge Mass Spectrometry KW - Inductively Coupled Plasma Mass Spectrometry KW - Laser Ablation PY - 2018 AN - OPUS4-44461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage Lecture N2 - After finishing my diploma thesis in plasma physics in 1981, I dreamt of a future in a research lab to develop novel fusion reactors for energy production or to study universal plasmas and their emission in the cosmos. This dream never became real, however I found my first job in a team to build up a new museum dedicated to “Energy”, and this first part of my career was already finished after a year, because the funding was not extended. So, I found immediately a new job as a young scientist in the institute for analytical sciences (originally ISAS: Institute for Plasmachemistry and Applied Spectroscopy) in 1982 to develop novel plasma ion sources for inorganic mass spectrometry. The first source of interest was based on a glow discharge for direct analysis of conducting solids (technically supported by Finnigan MAT, Bremen). Here I adopted the design of the Grimm type discharge for the first time, which was well known in optical emission spectroscopy, and coupled it to a quadrupole mass analyzer. The advantage of this design was that flat craters are produced by sputtering which made this source very powerful for in-depth analysis of technical layers. This then became the topic of my PhD, which was not originally planned, and I had to learn a lot about surface analysis. However, since the first project was too successful we established a small team (in cooperation with Jose Broekaert - an expert in ICP-OES) which started with the development of our own inductively coupled plasma ion source in 1986 coupled to a quadrupole and in 1989 to a sector field mass spectrometer (funded by the Minister of Science and Technology; again in cooperation with Finnigan MAT). The latter device was launched to the market in 1993 as the Element 1. The second decade of my career was still related to instrumental development but mainly of glow discharge sources. In an EU funded project first an automated glow discharge sector field instrument was developed where the Grimm type geometry was combined with a fast flow concept (in cooperation with Volker Hoffmann at IFW in Dresden). This was done in cooperation with VG (which became later a part of Thermo Fisher Scientific together with Finnigan MAT), so that it is not surprising that this concept for the Element GD. This project was later continued in the third phase of my career, again funded by the EU and in cooperation with the group of Alfredo Sanz-Medel (Rosario Pereiro and Jorge Pisonero), to develop a fast flow, but now rf-powered GD ion source in combination with a time-of-flight mass spectrometer, which was later launched to the market commercially by Horiba Jobin Yvon (France) for in-depth profiling of thin layers even of non-conducting materials. In the first decade of my career I started to study already “analytical chemistry” from the scratch because the instruments developed have been applied now for direct analysis of solid materials, technical layers and environmental samples. In case of environmental applications our ICP-MS (the quadrupole and the sector field instrument) was coupled with separation techniques, so that this period of instrumental development was dominated in the second decade by development of high efficiency sample introduction systems in combination with speciation studies of Pt group elements, arsenic, selenium and phosphorus (in DNA and phosphorylated proteins), Ni and Cr. Additionally, we continued with the analysis of solid ceramic materials (Al2O3, SiC, SiN) and ambient air-born particles. At the end of the second decade we complemented our instrumental pool by a collision and reaction cell instrument in cooperation with Micromass and used this instrument for speciation studies of peptides and proteins and demonstrated that by ICP-HEX-MS quantitative proteomics is feasible. Therefore, we more and more focused in the following years on metalloproteins and published a famous paper on “Metallobiomolecules: The basis of life, the challenge of atomic spectroscopy” (together with Luc Moens and Ryszard Lobinski). For detection of metalloproteins we applied typical workflows of biochemistry and proteomics, for which I had to extend my knowledge about biochemistry and proteomics. As a new analytical tool, we used a homemade laser ablation cell for sample introduction of metalloproteins after their separation by gel electrophoresis and extended this work by applying metal-tagging of antibodies for Western blot assays. For this purpose, proteins were separated in SDS-PAGE and electroblotted onto membranes. Specific detection of proteins even not containing any metal could be performed by laser ablation ICP-MS using the metal tagged antibodies for indirect detection. This research was interrupted in 2009 by a movement from ISAS (where atomic spectroscopy was declining) to BAM (the Federal Institute for Materials Research and Testing, Berlin) where this research direction was fostered. The experience we achieved at ISAS in the previously mentioned projects were now used here at BAM in the fourth decade for materials research and the development of a quantitative elemental microscope with cellular resolution. So, at the end of my career I am trying to apply all my knowledge and expertise to develop analytical methods and to apply multimodal spectroscopies to decipher the construction code of the cellular machinery, which is the most precise and complex machinery I have ever seen. If we were able to understand how this machinery works, we can better diagnose and treat a malfunction in case of the development of a disease. Finally, I can conclude that lifelong learning starts before school but does not end at the end of this lecture. It looks like this heritage lecture will be focused on my career only, but this is not the case because some highlights of my career will be used to illustrate a few universal principles: how to have fun, how to find friends and how this all leads to an increase of joy and joy is the basis of new ideas (which must not always be related to your profession) and novel ideas are essential for a successful and satisfying career. So, this heritage lecture wants to answer the most important question of a life which was dedicated to plasma spectrochemistry: 1) Is it possible - at all - to have fun in this research direction? 2) Can we learn already today what we need tomorrow? 3) How can we still realize our scientific dreams of cutting edge research in times of cutting budgets? Which automatically leads to the next question: 4) Is necessity the mother of invention? All questions will be answered! Controversial discussions (for angry or disappointed colleagues) will be stimulated and my visions of future research (for students and postdocs) and instrumental developments (for manufacturer) will be presented. Finally, conclusions will be drawn by the auditorium (everybody) and thanks will be given to Ramon Barnes (by me) already in advance! T2 - BAM-Doktorandenseminar CY - Berlin, Germany DA - 07.02.2018 KW - History of the research work of Norbert Jakubowski KW - Glow Discharge Mass Spectrometry KW - Inductively Coupled Plasma Mass Spectrometry KW - Laser Ablation PY - 2018 AN - OPUS4-44462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Münster, C. A1 - Kannengießer, Thomas T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - A graphical user interface for a fast multivariate classification of MALDI-TOF MS data of pollen grains N2 - The common characterization and identification of pollen is a time-consuming task that mainly relies on microscopic determination of the genus-specific pollen morphology. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows a high potential for the successful investigation of such complex biological samples. Based on optimized MALDI sample preparation using conductive carbon tape, the application of multivariate statistics (e.g. principal components analysis, PCA) yields an enormous improvement concerning taxonomic classification of pollen species compared to common microscopic techniques. Since multivariate evaluation of the recorded mass spectra is of vital importance for classification, it’s helpful to implement the applied sequence of standard Matlab functions into a graphical user interface (GUI). In this presentation, a stand-alone application (GUI) is shown, which provides multiple functions to perform fast multivariate analysis on multiple datasets. The use of a GUI enables a first overview on the measured dataset, conducts spectral pretreatment and can give classification information based on HCA and PCA evaluation. Moreover, it can be used to improve fast spectral classification and supports the development of a simple routine method to identify pollen based on mass spectrometry. T2 - 12. Interdisziplinäres Doktorandenseminar, GDCh AK Prozessanalytik CY - BAM, AH, Berlin, Germany DA - 25.03.2018 KW - MALDI KW - GUI KW - Pollen PY - 2018 AN - OPUS4-44661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Tütken, T. T1 - Exploring variations in the three-isotope space: A new approach and application to magnesium isotope fractionation in the mammal food web N2 - In chemical elements with three or more stable isotopes, mass-dependent stable isotope fractionation is expressed by co-varying isotope ratios. In the three-isotope space ((δ’m2/δ’m1)/(( δ’m3/δ’m1)) these plot along a line with a slope (β), the so called ‘terrestrial fractionation line’. This partitioning of stable isotopes results from both kinetic and equilibrium reactions that are characterized by specific β-values. For the natural range of isotope ratios of ‘novel’ stable isotope systems such as Si, Mg, Fe, Zn, Cu this information cannot be accessed because samples fall close to the delta-zero standard where the current measurement precision is too low to resolve small differences in β. We present a new approach to resolve deviations from a reference slope β by standard-sample bracketing against material offset from the natural range. We use this approach to explore the isotope fractionation mechanism in the mammalian food web. We have analyzed Mg stable isotope ratios in bone bioapatite of herbivore, omnivore and carnivore mammals. Positive shifts in δ26/24Mg along the trophic chain (from herbivore to carnivore) together with β= 0.513 suggest the presence of two isotope fractionation mechanisms operating during biomineralization. While positive shifts in δ26/24Mg are in favor of equilibrium isotope fractionation process, the proximity of β to the theoretically calculated β(kinetic) of typically 0.511 suggests the presence of a second component that fractionates stable isotopes kinetically. The herein presented approach is applicable to any element with 3+ stable isotopes analyzed by multi-collector inductively coupled plasma mass spectrometry. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Magnesium delta values KW - Equilibrium isotope fractionation KW - Kinetic isotope fractionation KW - Measurement uncertainty KW - Mammals KW - Food web PY - 2018 AN - OPUS4-44643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - LA-ICP-MS to study nanoparticle-cell interaction N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning both spatial resolution (down to 1 µm) and signal-to-background ratio due to low-dispersion LA chambers make LA-ICP-MS particularly interesting for single cell analysis. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. The cells were incubated with different NPs under varying experimental conditions and afterwards fixed with para-formaldehyde and dried for LA analysis. High-spatial resolution LA-ICP-MS was achieved by careful optimisation of the laser ablation parameters. Our findings show, that LA-ICP-MS is applicable to localize NP aggregates within cellular compartments. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into nanoparticle-cell interaction dependent on experimental parameters. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Rurack, Knut T1 - Fluorescence-based optical system for the detection of total petroleum hydrocarbons in water and soil with smartphone read-out compatibility - Spectrocube, a sensor for rapid oil test in water and soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. The timely identification of these contaminants is of utmost importance, since they directly affect water quality and represent a risk for wildlife and human health even in trace amounts. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil, the "Spectrocube". The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 4-DNS-OH dye. This dye is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions of water with the dye and providing a robust support for use in test-strip fashion. The test-strip’s fluorescence intensity increases linearly at low concentrations of TPH, reaching a saturation value at higher concentrations. For excitation and evaluation of the test-strip fluorescence, a simple miniature optical system was designed. The system works semi-quantitatively as solvent-free TPH detection kit, as well as quantitatively when using a simple cyclopentane extraction step. To simplify the fluorescence read-out, the device is coupled to a tablet computer via Bluetooth, running a self-programmed software ("app"). T2 - Oil Spill India 2018 CY - New Delhi, India DA - 05.07.2018 KW - Oil analysis KW - Water analysis KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Field test KW - Spectroscopy KW - Sensor PY - 2018 AN - OPUS4-45606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Wanka, Antje T1 - Development of immuno-assays and metal-staining techniques for bioimaging of cells and tissues using LA-ICP-MS N2 - We are using LA-ICP-MS to quantify metals in biological cells and thin cuts of tissues from varies organs. Different applications will be presented to demonstrate the state of the art of bioimaging to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells) of metals, metal containing stains and metal-tagged antibodies. For this purpose, different strategies for metal tagging will be presented and will be compared in terms of analytical figures of merit. First applications for detection of biomarkers in animal and human tissue samples will be presented. In a first example, we have applied LA-ICP-MS to visualize the local distribution of proteins, which are used as bio-markers for neurodegenerative diseases. For this purpose, brain tissues from mice experiments have been stained by metal-tagged antibodies. House-keeping proteins have been investigated as internal cellular standards. Additionally, ink-jet printing of metal doped inks onto the surface of tissue samples has been applied for drift corrections and quantification. Validation of our results are achieved in comparison to immune-histochemical staining and optical microscopy. In a second example, we used specific metal-tagged antibodies for detection of biomarker specific for prostate cancer. For this purpose, micro tissue arrays are incubated with metal-tagged antibodies for bioimaging of samples from many patients using simultaneous detection of all relevant biomarkers and their tags. For improvement of sensitivity in the next example application nanoparticle tagged antibodies for detection of metallothionines in eye lens tissue samples will be discussed. Recently we have used our tagging and staining strategies to determine the cell cycle of single cells, which is of future interest for toxicological studies. Finally, future trends in elemental microscopy and mass cytometry imaging will be discussed. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Single cell analysis KW - LA-ICP-MS KW - Immuno-Assays PY - 2018 AN - OPUS4-45160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Molecularly Imprinted Polymers with Integrated Fluorescence as Versatile Biomimetic Sensing Matrices N2 - Molecularly imprinted polymers (MIPs) are an established, versatile and high-performance matrix for the selective separation or enrichment of (bio)chemical species, especially small molecules of biochemical or environmental relevance. MIPs are prepared through the polymerization of a mixture of functional monomers and cross-linkers in the presence of the template with subsequent extraction of the latter. Conceptionally, this process can be seen as mimicking in a strongly accelerated, though single-step manner a biological process such as antibody formation. Because the resulting MIPs contain cavities in their matrix that are complementary in size, shape and electronic/ electrostatic or hydrogen bonding demand to the imprinted target molecule or template, these polymers are frequently termed “artificial antibodies”. Compared to natural antibodies, they are chemically and physically much more robust. Regarding sensitivity and selectivity, however, there is still a gap to bridge before MIPs can fully compete with antibodies. Another favorable aspect that distinguishes MIPs from antibodies is that they can be endowed with an explicit function, allowing the use of MIPs in applications that require more than only an efficient binder. For instance, if specifically designed and polymerizable fluorescent indicators are integrated as functional monomers into a MIP, direct fluorescence sensing can be accomplished. Because MIPs can be prepared in a variety of different formats, their combination with miniaturized or other specific analytical techniques or sensory devices is possible, especially when the transduction mode is light. This presentation will introduce basic design considerations, challenges, limitations and the potential that lies with such sensor materials with some recent examples of our group, targeting various organic oxoanions as analytes. T2 - 8th International Symposium on Bioanalysis, Biomedical Engineering and Nanotechnology CY - Changsha, Hunan, China DA - 25.05.2018 KW - Molecularly imprinted polymers KW - Fluorescence KW - Anion recognition PY - 2018 AN - OPUS4-45641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Tagging reagents for imaging mass cytometry N2 - In der klinischen Diagnostik werden für zytometrische Messverfahren bereits eine Reihe von Reagenzien eingesetzt zur Markierung von Antikörper eingesetzt, um die Detektion von Biomarkern mittels Fluoreszenz- oder Flugzeitmassenspektrometrie zu ermöglichen. Seit kurzem ist auch eine Imaging Mass Cytometry Kombination direkt erhältlich, wodurch der Nachweis von Biomarkern in Gewebeschnitten erreicht werden kann. Dazu wird eine Kopplung von Laser Ablation und induktiv gekoppeltem Plasma Massenspektrometrie eingesetzt, wobei ähnlich der Massenzytometrie, zuvor Antikörper mit Metallen markiert, und im Anschluss mit dem Gewebeschnitt inkubiert werden. Durch die hohe Ortsauflösung können die Biomarker lokalisiert, und zukünftig vielleicht auch quantifiziert werden. Insbesondere Lanthanide eignen sich als Markierungsmetalle, da sie einen niedrigen Untergrund und chemisch ähnliches Verhalten zueinander aufweisen. Allein durch diese Elemente können bereits etwa 15 Parameter unterschieden werden, was durch isotopenreine Standards weiter gesteigert werden kann. Vom Markierungsgrad abhängig werden unterschiedlich viele Metalle am Antikörper gebunden, und beeinflussen so die Sichtbarkeit im ICP-MS. Nanopartikel könnten daher eine deutliche Steigerung der Sensitivität bewirken. GdVO4 Nanokristalle scheinen bisher sehr vielversprechend und bieten neben multiparametrischen Anwendungen auch Multimodalität. Die Synthese der Nanokristalle zeigte hohe Homogenität und Reproduzierbarkeit in Partikelgröße in der Zusammensetzung. Ein erstes Experiment mit einer Zellkultur konnte bereits die effiziente Markierung der Zellen unter Beweis stellen, wobei durch hohe Signalstärke auch subzelluläre Auflösung in der LA-ICP-MS erreicht werden konnte. T2 - ICPMS Anwendertreffen 2018 CY - Berlin, Germany DA - 03.09.2018 KW - LA-ICP-MS KW - Immuno assay KW - Bioimaging KW - Nanocrystal KW - Lanthanide KW - Metal-tag PY - 2018 AN - OPUS4-45866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Optimum Magnification Factor in Digital Radiography - Selection Criteria and Formulas N2 - The transition from X-ray film to digital detectors in radiography is accompanied by an increase of unsharpness due to the larger inherent digital detector unsharpness in comparison to film. The basic spatial resolution of digital detectors (see EN ISO 17636-2) is used today to describe this unsharpness. The geometrical unsharpness of the radiographic projection of object structures onto the detector plane is determined by the focal spot size of the X-ray tube and the magnification. The focal spot size is measured today (see ASTM E 1165) from pin hole camera exposures or edge unsharpness (see ASTM E 2903). The final image unsharpness is a result of a convolution of the geometrical and inherent detector unsharpness function, divided by the magnification factor of the object onto the detector plane. Different approximations of this convolution result in ASTM E 1000 and ISO 17636-2 in different optimum values for the magnification factor for a given focal spot size of a X—ray tube and the basic spatial resolution of the detector. The higher contrast sensitivity, an advantage of digital radiography, compared to film radiography is furthermore improved when using higher X-ray voltages as used with film and smaller focal spots of the X-ray tubes. This allows a higher distance between object and detector resulting in reduced object scatter in the image. The interactions between all these parameters will be discussed and simple rules for practitioners will be derived in this contribution. T2 - 12th ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Digital Radiology KW - Image unsharpness KW - Optimum magnification PY - 2018 AN - OPUS4-47351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Microplastics: Degradation properties of polymers in the environment N2 - The accumulation of plastics leaked into the environment achieve a high perception in the last years. It is uncontroversial that often an uncontrolled, high consumption of plastic products and a poor waste management resulted in plastic findings all over in the environment. However, less is known about the relevant pathways and fate of plastic in the environment. Especially plastic fragments smaller 5 mmm, so called microplastics, achieve a high attention, because their amount and risks arising from these fragments are still unknown. The basic mechanisms of plastic or more precise, of different polymer degradation processes are often not considered, resulting in unrealistic statements. For generation of fundamental understanding of this problem we developed in the last years a fast thermoanalytical method for identification and mass quantification of microplastics in complex samples. The presentation will also give a short introduction about polymer degradation. T2 - Environmental Geosciences Seminar CY - Vienna, Austria DA - 19.11.2018 KW - Microplastic KW - Analysis KW - Standardisation PY - 2018 AN - OPUS4-47182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Dümichen, E. A1 - Bannick, C. G. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Turning up the heat: a thermoanalytical approach for the detection of microplastics N2 - The presentation deals with the analysis of plastics in environmental samples using the TED-GC-MS method. The method and its working principles are presented, method characteristics and application examples are given. Advantages and disadvantages compared to other methods are highlighted. T2 - Linnaeus Eco-Tech 2018 CY - Kalmar, Sweden DA - 19.11.2018 KW - Microplastics KW - Tire wear KW - Thermoanalysis KW - TED-GC-MS PY - 2018 AN - OPUS4-47185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Loehr, Konrad T1 - Towards single cell arraying for LA-ICP-MS N2 - Analysis of single cells via LA-ICP-MS is a technique with great potential, however manual targeting of single cells is laborious and therefore microarraying of cells looks promising. In this work, we investigate the potential of a commercial non-contact piezo dispenser arraying system (S3, Scienion AG, Berlin), equipped with a novel technology for single-cell isolation called CellenONE™ (Cellenion, Lyon). Usually if one aims to create a microarray of single cells via spotting a suitably diluted cell suspension, one will observe a Poisson-distributed cell number per spot. CellenONE™ overcomes this problem by controlling the number of cells optically in the piezo dispense capillary (PDC) via image recognition to obtain true single cell arrays. The figures of merit of the customized and optimized setup will be presented. In a proof of concept experiment we investigated the trace elemental fingerprint of THP-1 cells by LA-ICP-TOF-MS (Analyte G2, Teledyne Cetac; icpTOF, TOFWERK) and quantified two metal cell dyes, mDOTA-Ho (CheMatech, Dijon), and Ir-DNA intercalator (Fluidigm, San Francisco). For that, matrix matched calibration standards after Wang et al. were successfully prepared using the same arraying system. We believe that this novel approach opens new ways for automated quantitative single cell LA-ICP-MS. T2 - DIAGNOSTICS 8.0 CY - Berlin, Germany DA - 06.09.2018 KW - High throughput KW - Single cell KW - Laser ablation KW - ICP-MS KW - CellenONE PY - 2018 AN - OPUS4-45904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Principles for the development of standards for investigation procedures of plastics in environmental media and materials N2 - An overview about the current status of microplastic analysis is given with scope on hamonisation and standarisation. T2 - Annual ISO/TC 61 Meeting CY - Saitama, Japan DA - 24.09.2018 KW - Standardisation KW - Microplastic KW - Analysis PY - 2018 AN - OPUS4-46457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - LA-ICP-MS for the analysis of nanoparticles in cells N2 - Many current nanomaterials can serve as contrast agents in cellular or tissue imaging, drug delivery vehicles or therapeutics, whereas others can cause toxic effects. In order to evaluate nano-bio interactions, the number of nanoparticles (NPs) inside cells as well as their localisation within cellular substructures is of particular interest. The cellular uptake depends on the primary characteristics of the NPs (e.g. size, shape, surface coating) and on the cell type. Laser ablation inductively coupled plasma mass spectrometry (LA‑ICP‑MS) is more and more used to study the NP pathway from uptake, via intracellular processing up to cell division. High-spatial resolution laser ablation at single cell level is achieved using novel low-dispersion LA chambers and by careful optimisation of laser energy, ablation frequency and scan speed at small laser spot sizes down to 1 µm. Different examples from BAM, Division 1.1 and cooperation partners using LA-ICP-MS to localize and quantify metal-containing nanoparticles are shown. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation. T2 - 13. Symposium "Massensprektrometrische Verfahren der Elementspurenanalyse" + 26. ICP-MS Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Laser ablation KW - Cells KW - Nanoparticles KW - Imaging PY - 2018 AN - OPUS4-46440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Snow, T. A1 - Pauw, Brian Richard A1 - Smith, A. A1 - Terrill, N. A1 - Thuenemann, Andreas T1 - Modular SAXS data corrections N2 - A standardized methodology for the correction of scattering patterns, the calculation of uncertainties, the subtraction of backgrounds and solvents, optionally followed by the azimuthal averaging/reduction step, is presented. T2 - XVII International Small Angle Scattering Conference - SAS2018 CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - Small-angle scattering KW - Software KW - Sata corrections KW - Quality PY - 2018 AN - OPUS4-46520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Grunewald, Christian A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - XAFS@BAMline N2 - X-ray Absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and Change of chemical compounds such as catalytic species or corrosion processes. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of materials. While XAFS measurements are usually performed with ionization Chambers or simple fluorescence detectors, we at BAMline specialize in measurements with innovative set-ups that meet Specialrequirements such as time resolution, (3D-) spatial Resolution or demanding sample environments. This contribution presents various available XAFS configurations with their corresponding applications. In particular, these comprise single -shot XAFS for time- resolved measurements, grazing-exit XAFS with energy and a spatially resolved detector for the characterization of thin films and an in situ grazing incidence Setup for the characterization of corrosion layers. Additionally,the possibility of analyzing Minute samples in total-reflection geometry is demonstrated. T2 - EXRS 2018 CY - Ljubljana, Slovenia DA - 24.06.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron KW - TXRF PY - 2018 AN - OPUS4-46361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Kulow, Anicó A1 - Seeberg, D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Grunewald, Christian A1 - Riesemeier, Heinrich A1 - Wohlrab, S. T1 - S2XAFS@work: Customization for the Characterization of VOx based Catalysts N2 - X-ray absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and change of chemical compounds such as catalytic species. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of efficient catalysts. This investigation is based on a newly developed XAFS setup comprising both time- and lateral-resolved XAFS information simultaneously in a single-shot (S2XAFS). The primary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector with a theta to 2 theta geometry. This facile, stable and scanningless setup was tested at the BAMline @ BESSY-II (Berlin, Germany). This contribution focuses on further experimental optimizations allowing the characterization of supported vanadium oxide (VOx) based catalysts at the lower hard X-ray regime (5 to 6 keV). First S2XAFS measurements of these catalysts are presented herein. Supported VOx catalysts show promising results in the oxidation of methane to formaldehyde. S2XAFS allows determining the structural composition of the metal (i.e. vanadium) based on a fast and smart setup. It is therefore an ideal tool to identify crucial roles of chemical compounds in catalytic reactions. T2 - XAFS 2018 CY - Cracow, Poland DA - 22.07.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron PY - 2018 AN - OPUS4-46362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, o T1 - The colour X-ray camera – Basics and applications of a 2D X-ray detector N2 - The Color X-ray Camera CXC or SLcam® is an energy-resolving X-ray camera capable of energy- and space-resolved measurements. It consists of a high-speed CCD detector coupled to a polycapil-lary optic that conducts the X-ray photons from the probe to distinct pixels onto the detector. The camera is capable of fast acquisition of spatially and energy resolved fluorescence images. A dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the elements distribution in a sample. It was developed in a joint project with BAM, IFG Berlin and PN Sensors. In this contribution we will mainly discuss the use of the CXC at our beamline, the BAMline at BESSY II and imaging applications of the CXC from different areas, like biology and archaeometry. Additionally new developments for the use of the detector without optics, like wavelength dispersive detection or 1shot-XANES, will be presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 24.01.2018 KW - XRF KW - Synchrotron KW - BAMline PY - 2018 AN - OPUS4-46365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raysyan, Anna A1 - Raysyan, Anna T1 - Development of dipstick immunoassays for environmental and diagnostic applications missions from plastic materials N2 - Development of dipstick immunoassays for environmental analysis and integration the technology for diagnostic applications missions. T2 - Arbeitskreistreffen Immunoassays CY - Hennigsdorf, Germany DA - 26.11.2018 KW - Environmental analysis KW - LFIA KW - BPA KW - DCF PY - 2018 AN - OPUS4-46801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raysyan, Anna T1 - Breaking the wall of complicated laboratory methods N2 - How intricate lab methods make it to the lay(wo)men’s hand. T2 - Falling Walls Lab Adlershof CY - Berlin, Germany DA - 28.09.2018 KW - Easy-use device PY - 2018 AN - OPUS4-46755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanistic investigations of mechanosyntheses N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms often remain unclear. In the last years, we have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. A further development is the in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. [5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. Based on these data, metastable polymorphs of cocrystals and coordination polymorphs could be isolated and struc-turally characterized. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Beilstein Symposium MECHANOCHEMISTRY: MICROSCOPIC AND MACROSCOPIC ASPECTS CY - Rüdesheim, Germany DA - 13.11.2018 KW - Mechanochemistry KW - Phosphonates KW - In situ PY - 2018 AN - OPUS4-46758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Improved algorithm for calibration-free laser induced breakdown spectroscopy N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) will be presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is thoroughly verified using synthetic spectra. T2 - LIBS 2018 at SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 AN - OPUS4-46930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalanthan-Budau, Nithiya A1 - Moser, Marko A1 - Roloff, Alexander A1 - Moldenhauer, Daniel T1 - Quantification of Surface Groups on Nanomaterials with Simple Optical Methods N2 - Surface functionalization of nanomaterials is nowadays at the core of many applications of functional materials in the life and material sciences. Examples range from membranes and microarrays over bead-based assays, and next generation sequencing to nanometer-sized optical reporters, nanosensors, and magnetic and optical contrast agents. Typical function-nalization steps include silanization and grafting reactions with reactive monomers to introduce functional groups like amino or carboxylic acid groups or the attachment of ligands like polyethylene glycol (PEG) molecules and biomolecules. [1-3] This enables to tune e.g., dis-persibility, hydrophilicity and biocompatibility, minimize unspecific interactions, improve biofunctionalization efficiencies, and enhance blood circulation times and allows for the use of nanomaterials as reporters in assays or the design of targeted probes for bioimaging. At the core of all functionalization strategies are reliable and validated methods for surface group and ligand quantification that can be preferably performed with routine laboratory instrumentation, require only small amounts of substances, and are suitable for many different types of nanomaterials. [3] There is meanwhile a considerable need to make these methods traceable. We present here versatile and simple concepts for the quantification of common functional groups, ligands, and biomolecules on different types of organic and inorganic nanomaterials, using conventional and newly developed cleavable and multimodal reporters, that can be detected with optical spectroscopy. [4-7] These reporters are chosen to enable method validation with the aid of method comparisons and mass balances. Also, strategies how to make these simple assays traceable to SI units using quantitative nuclear resonance spectroscopy (qNMR) and X-ray photoelectron spectroscopy (XPS) are derived. T2 - JRC-NIST Workshop CY - Ispra, Italy DA - 04.12.2018 KW - Nanoparticle KW - Nanocrystal KW - Absolute fluorometry KW - Fluorescence KW - Surface chemistry KW - Assay KW - Cleavable probe KW - Conductometry KW - Quantification KW - Functional group PY - 2018 AN - OPUS4-46950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma fundamentals and diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basics of plasma computer modeling will be presented. T2 - 03.-06. September 2018, 13 Symposium "Massenspektrometrische Verfahren der Elementspurenanalyze", BAM, Berlin, Adlershof CY - BAM, Berlin, Adlershof, Germany DA - 03.09.2018 KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information KW - Plasma modeling PY - 2018 AN - OPUS4-46108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Dynamical chemical model of laser induced plasma N2 - Laser induced plasma (LIP) is a highly dynamic, short living event which presents significant difficulty for both diagnostics and modeling. The former requires precise spatially- and time-resolved measurements on a micron-nanosecond scale while the latter needs numerous descriptive parameters; many of them can only be obtained from experiment. Diagnostics and modeling should always complement each other for obtaining a truthful picture of LIP. In this presentation, a newly developed collisional-dominated model will be presented. The model is based on the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The model incorporates plasma chemistry through the equilibrium approach that relies on atomic and molecular partition functions. Several chemical systems are modeled including Si-C-Cl-N and B-H-Cl systems. The model is used to study the equilibrium states of the systems as functions of the concentrations of plasma species and plasma temperature. The model also predicts the evolution of number densities of atomic and molecular species in the expanding plasma plume. T2 - 18.09.2018, 9th International Conference on PLASMA PHYSICS AND PLASMA TECHNOLOGY (PPPT‐9) CY - Minsk, Belorussia DA - 17.09.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-46111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röthke, A. A1 - Richter, Silke A1 - Görlitz, V. A1 - Pape, C. A1 - Schulz, U. A1 - Jährling, R. A1 - Meinhardt, R. A1 - Koenig, M. A1 - Becker, D. A1 - Charoud-Got, J. A1 - Weber, M. A1 - Rienitz, O. T1 - As good as or even better than ID-ICP-MS? High accuracy ICP OES determination of 1 g/kg mercury solutions N2 - To establish the SI traceability of the element content w(Hg) of a gravimetrically prepared 1 g/kg mercury solution, the latter was compared to a primary reference solution by means of high accuracy inductively coupled plasma optical emission spectrometry (ICP OES) measurements. For this purpose, the ICP OES bracketing method previously described [1] was improved to yield a relative expanded uncertainty of the mercury element content of Urel(w(Hg)) = 0.5 % (with k = 2) associated with the comparison of two monoelemental solutions. In case of mercury, such a small uncertainty was achieved for the first time. Before, in general, such small uncertainties were only reported applying isotope dilution methods performed with MC-ICP-MS. However, for mercury solutions at this concentration range, several dilution steps are necessary to prepare the samples for ID-MC-ICP-MS. The sum of the uncertainty contributions stemming from the dilution steps, as well as the intrinsic difficulties of measuring mercury at low concentrations, result in an overall uncertainty of the ICP-MS measurements, which is comparable to or even larger than those, achieved with the ICP OES method applied. We will present details of the sample preparation as well as of the dedicated ICP OES measurement approach, which were crucial to achieve such a small measurement uncertainty. The newly developed method was successfully applied in the context of the development and production of elemental solution chemical reference standards (CRS), which are distributed by the EDQM. The CRS are intended to support measurements required by the European Pharmacopoeia, which has recently incorporated a new international guideline for the control of elemental impurities in medicinal products. T2 - ICP-MS Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Traceability KW - Mercury solution PY - 2018 AN - OPUS4-46218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Geissler, Daniel A1 - Weigert, Florian A1 - Kaiser, Martin T1 - Spectroscopic characterization of semiconductor and lanthanide-based nanocrystals with vis and NIR emission N2 - Common approaches to improve the optical properties of semiconductor quantum dots and lanthanide doped nanophosphors present core/shell structures as radiationless deactivation at the particle surface is usually the main energy loss mechanism. This has led to increasingly sophisticated particle architectures using multishell systems with shells of different chemical composition and thickness and initiated an increasing number of quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield to identify optimum particle structures. This is particularly challenging in the long wavelength region > 1000 nm and for nonlinear emitters like upconversion nanocrystals. Here, we present suitable absolute methods to quantify the photoluminescence of these different emitters in the vis/NIR/IR and as function of excitation power density and underline the impact of such measurements on a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - NANO 2018 CY - Hong Kong, People's Republic of China DA - 24.06.2018 KW - Upconversion KW - Semiconductor KW - Quantum dot KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Modeling KW - Size PY - 2018 AN - OPUS4-45797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, V. A1 - Richter, Silke T1 - Progress at the calibration of light elements N2 - Analytical glow discharges with optical (GD-OES) and mass spectrometric (GD-MS) detection are able to obtain depth resolved information about the light elements hydrogen, carbon, nitrogen and oxygen in solid samples, where most of the other analytical techniques fail. However, the interpretation or even quantification of the measured signals is still very challenging. Problems arise due to physical effects (plasma processes such as the ‘Hydrogen effect’, the Doppler effect, self absorption or diffusion of hydrogen in the sample during sputtering) chemical effects(e.g. formation of compounds with argon or the matrix, poisoning of the sample or gettering) as well as instrumental difficulties (e.g. of the sensitivity, calibration and vacuum quality).. The GD techniques are direct solid sampling methods and require reference materials for calibration. Unfortunately the list of available certified reference materials (CRM) suited for calibration of light elements in different matrix is relatively short Therefore, sintered materials doped with the analytes H2, O2 and N2 were produced at IFW Dresden and applied as calibration standards for hydrogen, oxygen and nitrogen. Due to the high analyte concentration added, it is very likely that the real concentration agree well with the added amount of light elements in the corresponding phases. The validation of the determination of the light element concentration in the sintered samples was possible in some cases only due to the lack of suitable techniques. This fact proves the need for the development of a reliable quantification of light elements by GDS. A systematic dependence of the sputtering rate on the composition was found and can be explained by basic principles. Using mixtures of TiH2 and ZrH2 with Cu the ratio of hydrogen and Cu lines has a good correlation with the corresponding concentration ratio. The hydrogen emission yield however decreases over 0.3 m% hydrogen and finally the hydrogen intensity may even decrease. This behaviour can be explained by a very similar quenching of the hydrogen and copper intensity caused by the hydrogen effect. First experiments with GD-MS show no saturation of the hydrogen ion current and thus confirm the quenching of the emission yield in GD-OES. Sintered material for the oxygen calibration (Al2O3, CuO, Cu2O and MgO mixed with Cu, Al and Mg) confirmed the blue line shift effect at O I 130.22 nm, first time reported by Köster 2009 [1]. The effect is more pronounced at Mg than in Al and Cu, which due to line interference leads to a matrix dependent EY. This effect is negligible at O I 777.19 nm and the EY is matrix independent. Using GD-MS first promising results for the calibration of oxygen with these sintered samples could be obtained, when the sputtering rate was included in the evaluation. More recently also sintered material for nitrogen calibration (AlN mixed with Al and Si3N4 mixed with Cu) was produced and points to a matrix independent emission yield of nitrogen T2 - 04 IGDSS CY - Berlin, Germany DA - 15.04.2018 KW - Glow Discharge KW - Non metals PY - 2018 AN - OPUS4-46223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Non-metals in inorganic reference materials N2 - The analysis of non-metals normally is carried out using elemental analysers which require reference material for calibration. In the lecture the CRM-program of BAM suitable for non-metal-analysis is presented. There are CRMs available with non-metal contents in the low ppm up to the high percent region. T2 - CETAMA 2018 CY - Paris, France DA - 27.11.2018 KW - CRM KW - Non-metals KW - Carbon KW - Sulfur KW - Oxygen KW - Nitrogen KW - Hydrogen KW - Reference material PY - 2018 AN - OPUS4-46968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Vogl, Jochen A1 - Jakubowksi, Norbert T1 - Protein quantification of an Alzheimer’s biomarker via isotope dilution inductively coupled plasma mass spectrometry N2 - Neurodegenerative diseases are one of the major problems for our ageing society. Alzheimer’s disease (AD) as the most common neurodegenerative disorder affects over 46.8 million people worldwide and the number will increase as the population ages. The diagnosis of AD is challenging and only half of the patients are identified yet and often only in late stages. One reason is that existing assays for identification and quantification of AD biomarkers lack accuracy and are poorly comparable. This study is part of the EU project “ReMiND” aiming to develop accurate, reliable and traceable methods for the detection and quantification of known and suspected AD biomarkers. Our target is the tau protein, as brain load and distribution of tau is highly correlated with the clinical progression of AD. We intend to develop a measurement method for the accurate quantification of tau by means of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful method for the matrix independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays emerging as a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms is highly promising, considering that established quantification methods like organic mass spectrometry depend on the existence of matched protein and peptide standards or labelling of the target protein. In this work, we applied isotope dilution analysis (IDA) using ICP-MS to quantify proteins of known stoichiometry via their sulphur content. Sulphur is present in two amino acids, cysteine and methionine, and hence is omnipresent in nearly all proteins. A NIST standard bovine serum albumin (BSA) was quantified using sulfur IDA to optimize sample preparation and method parameters. Our goal is to employ the developed method in a proof of concept study for the quantification of the AD biomarker tau extracted from brains of a mouse model for AD. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Isotope dilution KW - Protein analysis PY - 2018 AN - OPUS4-46585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example.Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme. T2 - Global Expert Meeting Analytical Quantification, Syngenta Crop Protection AG CY - Stein, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Analytical Chemists Meeting, Syngenta Crop Protection Monthey SA CY - Monthey, Switzerland DA - 23.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy KW - Direct loop control PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. Industry 4.0, IIoT, or Lab 4.0 will enable us to handle more complex processes in shorter time. Intensified production concepts require for adaptive analytical instruments and control technology to realize short set-up times, modular control strategies. They are based on a digitized Laboratory 4.0. T2 - GA-Conference CY - BASF, Ludwigshafen, Germany DA - 16.05.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Industrie 4.0 KW - Indirect Hard Modeling KW - Laboratory 4.0 KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - REsearch and Development Seminar, Syngenta Crop Protection AG CY - Münchwilen, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals Using Smart Sensors and Modular Production Units N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control and gives also an overview on direct dissolution studies of API cocrystals. T2 - Chemistry Group Seminar Pfizer Inc. CY - La Jolla, California, USA DA - 09.03.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Smart Sensors KW - Indirect Hard Modeling KW - Modular Production KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444382 AN - OPUS4-44438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy Uncertainty Analysis Workshop N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) Validation Workshop 2018 CY - La Jolla, California, USA DA - 08.03.2018 KW - qNMR KW - NMR Validation KW - Basic Statistics KW - Linear Regression PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444395 AN - OPUS4-44439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Workshop: Basic Statistics for NMR N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - qNMR-Summit 2018 CY - Würzburg, Germany DA - 10.10.2018 KW - Quantitative NMR Spectroscopy KW - Statistics KW - Quality Assurance KW - NMR validation KW - qNMR PY - 2018 AN - OPUS4-46368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Recknagel, Sebastian T1 - The USE of GDMS in the certification procedure of reference materials N2 - Reference materials are essential, when the accuracy and reliability of measurement results need to be guaranteed in order to generate confidence in the analysis. These materials are frequently used for determining measurement uncertainty, for validation of methods, suitability testing and quality assurance. Especially direct solid sampling methods require reference materials for calibration. They guarantee that measurement results can be compared to recognized reference values. This presentation gives an overview about the use of GDMS in various certification procedures. Because it represents a fast, sensitive, multielement analyses technique without extensive sample preparation it plays a special role for the purity determination of high purity standards. Various calibration strategies and the preparation of traceable matrix matched calibration standards will be discussed. For the certification of analyte content in matrix materials mainly techniques with solvent sample preparation are used. Here GD-MS is used to identify possible loss or contamination with analytes during the sample preparation step. Typically used acids to dissolve matrices lead to interferences in the ICP- mass spectrometric detection of various analytes and their quantification. Here GD-MS as direct method can also add an important contribution in the certification process. T2 - 4th IGDSS CY - Berlin, Germany DA - 15.04.2018 KW - GDMS KW - Reference materials PY - 2018 AN - OPUS4-46222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Tütken, T. T1 - How to measure the three-isotope composition of metal(oid) elements by MC-ICP-MS N2 - In chemical elements with three or more stable isotopes, mass-dependent stable isotope fractionation yields correlated isotope ratios, m2/m1 and m3/m1. In three-isotope space, i.e. in a δ’m2/δ’m1 vs. δ’m3/δ’m1 plot, data align along a slope θ, the so called ‘triple isotope fractionation exponent’ that scales the two isotope ratios. Theoretical calculations predict small differences in θ for kinetic- and equilibrium isotope fractionation (Young et al. 2002) and thus the precise measurement of θ allows constraining the reaction mechanism. However, due to an apparent lack of precision of stable isotope analysis by MC-ICP-MS, θ is merely used as analytical quality control, i.e. for demonstration that samples and standards plot within their analytical precision in the range of theoretical θ-values originating in δ-zero. We show how θ can be determined precisely enough by MC-ICP-MS to distinguish kinetic- and equilibrium isotope fractionation, even when isotopic differences between samples are low. For low magnitudes of isotope fractionation, we exploit new, isotopically fractionated isotope standard materials (Vogl et al. 2016). We determine quality norms regarding interferences and measurement conditions to warrant trueness and to maximize precision. We exemplary explore the measurement of the three-isotope composition of Mg stable isotopes, budget the uncertainty of θ-values, and report the first θ-values of carbonate-water pairs and bioapatite. Our measurement approach adds a new dimension to isotope data beyond the δ-scale that has a high potential to reveal different modes of (bio)mineral precipitation in the sedimentary and biological record and thus to contribute solving conundrums in the Earth and Life Sciences. T2 - 13. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse CY - Berlin, Germany DA - 03.09.2018 KW - Isotope fractionation KW - Delta values KW - Magnesium PY - 2018 AN - OPUS4-45898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Vocke, B. T1 - Delta values & isotope ratios - potential CCQM comparisons N2 - The talk presents several potential CCQM comparisons for delta values and isotope ratios with a focus on metals and semi-metals. T2 - CCQM IRWG Meeting CY - Paris, France DA - 18.04.2018 KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-45895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio measurements and certification of iRMs at BAM N2 - This presentation gives a short overview of isotope ratio measurements being carried out in the past few years at BAM in different fields such as plant metabolism, food web structures and archaeology. The corresponding isotope reference materials which have been certified at BAM in parallel are presented as well. Additionally an outlook is being provided on future iRM projects. T2 - Meeting of the Isotope Ratio Working Groupt of CCQM CY - Ottawa, Canada DA - 04.10.2018 KW - Isotope reference material KW - Delta value KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-47159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubwoski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using pe frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS:: porous material, thermo plastic (melting point >100oC), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 104 cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits whith increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S whit a correlation coefficient r2 of 0.9987 and sensitivy of 3.4x104 cpsµg-1 for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -